Candida species and selected behavioral factors co-associated with severe early childhood caries: Case-control study
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35959372
PubMed Central
PMC9357982
DOI
10.3389/fcimb.2022.943480
Knihovny.cz E-zdroje
- Klíčová slova
- Candida dubliniensis, Candida sp., Streptococcus mutans, breastfeeding, brushing of teeth, severe early childhood caries (sECC), sweet beverages,
- MeSH
- Candida albicans MeSH
- Candida MeSH
- dítě MeSH
- lidé MeSH
- náchylnost k zubnímu kazu MeSH
- předškolní dítě MeSH
- Streptococcus mutans MeSH
- studie případů a kontrol MeSH
- zubní kaz * MeSH
- zubní plak * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Severe Early Childhood Caries (sECC) is a multifactorial disease associated with the occurrence of specific oral microorganisms and other environmental, behavioral, and genetic factors. This study aimed to construct a multivariable model including the occurrence of Candida spp. and selected behavioral factors (length of breastfeeding, serving sweet beverages and beginning of brushing child's teeth) to determine their relationships to the occurrence of sECC. In this case-control study 164 children with sECC and 147 children without dental caries were included. MALDI-TOF MS and multiplex qPCR were used to identify Candida spp. and selected bacteria in dental plaque samples, respectively. A questionnaire on oral hygiene, diet, and children's health was filled in by the parents. The constructed multivariable logistic regression model showed an independent influence of the microbial and behavioral factors in sECC etiopathogenesis. The occurrence of C. albicans and C. dubliniensis was associated with higher odds of sECC development (odds ratio, OR: 9.62 and 16.93, respectively), together with breastfeeding of 6 months or less (OR: 2.71), exposure to sweet beverages (OR: 3.77), and starting to brush child's teeth after the 12th month of age (OR: 4.10), all statistically significant (p < 0.01). Considering the high occurrence of C. albicans and C. dubliniensis in dental plaque in children with sECC, we propose them as "keystone pathogens" and risk factors for sECC. The models showed that presence of specific species of Candida in dental plaque may be a better descriptor of sECC than the mentioned behavioral factors.
Department of Pathophysiology Faculty of Medicine Masaryk University Brno Czechia
Institute of Biostatistics and Analyses Faculty of Medicine Masaryk University Brno Czechia
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czechia
Zobrazit více v PubMed
Agnello M., Marques J., Cen L., Mittermuller B., Huang A., Chaichanasakul Tran N., et al. . (2017). Microbiome associated with severe caries in Canadian first nations children. J. Dent. Res. 96, 1378–1385. doi: 10.1177/0022034517718819 PubMed DOI PMC
Al-Ahmad A., Auschill T. M., Dakhel R., Wittmer A., Pelz K., Heumann C., et al. . (2016). Prevalence of Candida albicans and Candida dubliniensis in caries-free and caries-active children in relation to the oral microbiota-a clinical study. Clin. Oral. Investig. 20, 1963–1971. doi: 10.1007/s00784-015-1696-9 PubMed DOI
American Academy of Pediatric Dentistry (2017) Policy on early childhood caries (ECC): classifications, consequences, and preventive strategies. Available at: https://www.aapd.org/research/oral-health-policies–recommendations/early-childhood-caries-classifications-consequences-and-preventive-strategies/ (Accessed May 7, 2022). PubMed
Ayadi R., Sitterlé E., d’Enfert C., Dannaoui E., Bougnoux M.-E. (2020). Candida albicans and Candida dubliniensis show different trailing effect patterns when exposed to echinocandins and azoles. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.01286 PubMed DOI PMC
Bachtiar E. W., Bachtiar B. M. (2018). Relationship between Candida albicans and Streptococcus mutans in early childhood caries, evaluated by quantitative PCR. F1000Research 7, 1645. doi: 10.12688/f1000research.16275.2 PubMed DOI PMC
Baillie G. S., Douglas L. J. (1999). Role of dimorphism in the development of Candida albicans biofilms. J. Med. Microbiol. 48, 671–679. doi: 10.1099/00222615-48-7-671 PubMed DOI
Borilova Linhartova P., Deissova T., Musilova K., Zackova L., Kukletova M., Kukla L., et al. . (2018). Lack of association between ENAM gene polymorphism and dental caries in primary and permanent teeth in Czech children. Clin. Oral. Investig. 22, 1873–1877. doi: 10.1007/s00784-017-2280-2 PubMed DOI
Borilova Linhartova P., Kastovsky J., Bartosova M., Musilova K., Zackova L., Kukletova M., et al. . (2016). ACE Insertion/Deletion polymorphism associated with caries in permanent but not primary dentition in Czech children. Caries Res. 50, 89–96. doi: 10.1159/000443534 PubMed DOI
Bratthall D., Hänsel Petersson G. (2005). Cariogram–a multifactorial risk assessment model for a multifactorial disease. Community Dent. Oral. Epidemiol. 33, 256–264. doi: 10.1111/j.1600-0528.2005.00233.x PubMed DOI
Chevalier M., Ranque S., Prêcheur I. (2018). Oral fungal-bacterial biofilm models in vitro: a review. Med. Mycol. 56, 653–667. doi: 10.1093/mmy/myx111 PubMed DOI
Corrêa-Faria P., Martins-Júnior P. A., Vieira-Andrade R. G., Oliveira-Ferreira F., Marques L. S., Ramos-Jorge M. L. (2013). Developmental defects of enamel in primary teeth: prevalence and associated factors. Int. J. Paediatr. Dent. 23, 173–179. doi: 10.1111/j.1365-263X.2012.01241.x PubMed DOI
Cruvinel V. R. N., Gravina D. B. L., Azevedo T. D. P. L., de Rezende C. S., Bezerra A. C. B., de Toledo O. A., et al. . (2012). Prevalence of enamel defects and associated risk factors in both dentitions in preterm and full term born children. J. Appl. Oral. Sci. Rev. FOB 20, 310–317. doi: 10.1590/s1678-77572012000300003 PubMed DOI PMC
Dean A. G., Arner T. G., Sunki G. G., Friedman R., Lantinga M., Sangam S., et al. . (2020) Epi InfoTM, a database and statistics program for public health professionals (Atlanta, GA, USA: CDC; ). Available at: https://www.cdc.gov/epiinfo/index.html (Accessed July 30, 2021).
Deeks J. J., Higgins J. P. (2010) Statistical algorithms in review manager 5. Available at: https://training.cochrane.org/handbook/current/chapter-10-statistical-algorithms-revman-5-1 (Accessed August 17, 2021).
de Jesus V. C., Shikder R., Oryniak D., Mann K., Alamri A., Mittermuller B., et al. . (2020). Sex-based diverse plaque microbiota in children with severe caries. J. Dent. Res. 99, 703–712. doi: 10.1177/0022034520908595 PubMed DOI
Diaz P. I., Dongari-Bagtzoglou A. (2021). Critically appraising the significance of the oral mycobiome. J. Dent. Res. 100, 133–140. doi: 10.1177/0022034520956975 PubMed DOI PMC
Diaz P. I., Strausbaugh L. D., Dongari-Bagtzoglou A. (2014). Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front. Cell. Infect. Microbiol. 4. doi: 10.3389/fcimb.2014.00101 PubMed DOI PMC
Eidt G., Waltermann E. D. M., Hilgert J. B., Arthur R. A. (2020). Candida and dental caries in children, adolescents and adults: A systematic review and meta-analysis. Arch. Oral. Biol. 119, 104876. doi: 10.1016/j.archoralbio.2020.104876 PubMed DOI
Ells R., Kock J. L. F., Pohl C. H. (2011). Candida albicans or Candida dubliniensis ? Mycoses 54, 1–16. doi: 10.1111/j.1439-0507.2009.01759.x PubMed DOI
Feldens C. A., Giugliani E. R. J., Vigo Á., Vítolo M. R. (2010). Early feeding practices and severe early childhood caries in four-year-old children from southern Brazil: a birth cohort study. Caries Res. 44, 445–452. doi: 10.1159/000319898 PubMed DOI
Garcia B. A., Acosta N. C., Tomar S. L., Roesch L. F. W., Lemos J. A., Mugayar L. R. F., et al. . (2021). Association of Candida albicans and Cbp(+)Streptococcus mutans with early childhood caries recurrence. Sci. Rep. 11, 10802. doi: 10.1038/s41598-021-90198-3 PubMed DOI PMC
Hajishengallis G., Darveau R. P., Curtis M. A. (2012). The keystone pathogen hypothesis. Nat. Rev. Microbiol. 10, 717–725. doi: 10.1038/nrmicro2873 PubMed DOI PMC
Hajishengallis E., Parsaei Y., Klein M. I., Koo H. (2017). Advances in the microbial etiology and pathogenesis of early childhood caries. Mol. Oral. Microbiol. 32, 24–34. doi: 10.1111/omi.12152 PubMed DOI PMC
Hof H., Eigner U., Maier T., Staib P. (2012). Differentiation of Candida dubliniensis from Candida albicans by means of MALDI-TOF mass spectrometry. Clin. Lab. 58, 927–931. PubMed
Hong L., Levy S. M., Warren J. J., Broffitt B. (2014). Infant breast-feeding and childhood caries: a nine-year study. Pediatr. Dent. 36, 342–347. PubMed PMC
Jabra-Rizk M. A., Shirtliff M., James C., Meiller T. (2006). Effect of farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. FEMS Yeast Res. 6, 1063–1073. doi: 10.1111/j.1567-1364.2006.00121.x PubMed DOI
Janakiram C., Antony B., Joseph J. (2018). Association of undernutrition and early childhood dental caries. Indian Pediatr. 55, 683–685. doi: 10.1007/s13312-018-1359-4 PubMed DOI
Kassebaum N. J., Smith A. G. C., Bernabé E., Fleming T. D., Reynolds A. E., Vos T., et al. . (2017). Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. J. Dent. Res. 96, 380–387. doi: 10.1177/0022034517693566 PubMed DOI PMC
Kirkpatrick W. R., Lopez-Ribot J. L., McAtee R. K., Patterson T. F. (2000). Growth competition between Candida dubliniensis and Candida albicans under broth and biofilm growing conditions. J. Clin. Microbiol. 38, 902–904. doi: 10.1128/JCM.38.2.902-904.2000 PubMed DOI PMC
Kirthiga M., Murugan M., Saikia A., Kirubakaran R. (2019). Risk factors for early childhood caries: A systematic review and meta-analysis of case control and cohort studies. Pediatr. Dent. 41, 95–112. PubMed PMC
Kneist S., Borutta A., Sigusch B. W., Nietzsche S., Küpper H., Kostrzewa M., et al. . (2015). First-time isolation of Candida dubliniensis from plaque and carious dentine of primary teeth. Eur. Arch. Paediatr. Dent. Off. J. Eur. Acad. Paediatr. Dent. 16, 365–370. doi: 10.1007/s40368-015-0180-1 PubMed DOI
Kraljevic I., Filippi C., Filippi A. (2017). Risk indicators of early childhood caries (ECC) in children with high treatment needs. Swiss Dent. J. 127, 398–410. PubMed
Lalla R. V., Patton L. L., Dongari-Bagtzoglou A. (2013). Oral candidiasis: pathogenesis, clinical presentation, diagnosis and treatment strategies. J. Calif. Dent. Assoc. 41, 263–268. PubMed
Lemos J. A., Quivey R. G., Koo H., Abranches J. (2013). Streptococcus mutans: a new gram-positive paradigm? Microbiol. Read. Engl. 159, 436–445. doi: 10.1099/mic.0.066134-0 PubMed DOI PMC
Lochman J., Zapletalova M., Poskerova H., Izakovicova Holla L., Borilova Linhartova P. (2019). Rapid multiplex real-time PCR method for the detection and quantification of selected cariogenic and periodontal bacteria. Diagn. Basel Switz. 10, E8. doi: 10.3390/diagnostics10010008 PubMed DOI PMC
Metwalli K. H., Khan S. A., Krom B. P., Jabra-Rizk M. A. (2013). Streptococcus mutans, Candida albicans, and the human mouth: A sticky situation. PloS Pathog. 9, e1003616. doi: 10.1371/journal.ppat.1003616 PubMed DOI PMC
Mittlböck M., Schemper M. (1996). Explained variation for logistic regression. Stat. Med. 15, 1987–1997. doi: 10.1002/(SICI)1097-0258(19961015)15:19<1987::AID-SIM318>3.0.CO;2-9 PubMed DOI
Mohebbi S. Z., Virtanen J. I., Vahid-Golpayegani M., Vehkalahti M. M. (2008). Feeding habits as determinants of early childhood caries in a population where prolonged breastfeeding is the norm. Community Dent. Oral. Epidemiol. 36, 363–369. doi: 10.1111/j.1600-0528.2007.00408.x PubMed DOI
Montelongo-Jauregui D., Lopez-Ribot J. L. (2018). Candida interactions with the oral bacterial microbiota. J. Fungi Basel Switz. 4, E122. doi: 10.3390/jof4040122 PubMed DOI PMC
Moran G. P., Coleman D. C., Sullivan D. J. (2012). Candida albicans versus Candida dubliniensis: Why is C. albicans more pathogenic? Int. J. Microbiol. 2012, 205921. doi: 10.1155/2012/205921 PubMed DOI PMC
Nagelkerke N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika 78, 691–692. doi: 10.1093/biomet/78.3.691 DOI
O’Connell L. M., Santos R., Springer G., Burne R. A., Nascimento M. M., Richards V. P. (2020). Site-specific profiling of the dental mycobiome reveals strong taxonomic shifts during progression of early-childhood caries. Appl. Environ. Microbiol. 86, e02825–e02819. doi: 10.1128/AEM.02825-19 PubMed DOI PMC
O’Donnell L. E., Millhouse E., Sherry L., Kean R., Malcolm J., Nile C. J., et al. . (2015). Polymicrobial Candida biofilms: friends and foe in the oral cavity. FEMS Yeast Res. 15, fov077. doi: 10.1093/femsyr/fov077 PubMed DOI
Pagano M., Gauvreau K. (2000) Principles of biostatistics (Belmont: Brooks/Cole; ). Available at: https://www.routledge.com/Principles-of-Biostatistics/Pagano-Gauvreau/p/book/9781138593145 (Accessed August 17, 2021).
Samaranayake L. P., Keung Leung W., Jin L. (2009). Oral mucosal fungal infections. Periodontol 2000 49, 39–59. doi: 10.1111/j.1600-0757.2008.00291.x PubMed DOI
Schoofs A., Odds F. C., Colebunders R., Ieven M., Goossens H. (1997). Use of specialised isolation media for recognition and identification of Candida dubliniensis isolates from HIV-infected patients. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc Clin. Microbiol. 16, 296–300. doi: 10.1007/BF01695634 PubMed DOI
Schüler I. M., Haberstroh S., Dawczynski K., Lehmann T., Heinrich-Weltzien R. (2018). Dental caries and developmental defects of enamel in the primary dentition of preterm infants: Case-control observational study. Caries Res. 52, 22–31. doi: 10.1159/000480124 PubMed DOI
Setia M. S. (2016). Methodology series module 2: Case-control studies. Indian J. Dermatol. 61, 146–151. doi: 10.4103/0019-5154.177773 PubMed DOI PMC
Stokes C., Moran G. P., Spiering M. J., Cole G. T., Coleman D. C., Sullivan D. J. (2007). Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans . Fungal Genet. Biol. FG B 44, 920–931. doi: 10.1016/j.fgb.2006.11.014 PubMed DOI
Sullivan D., Haynes K., Bille J., Boerlin P., Rodero L., Lloyd S., et al. . (1997). Widespread geographic distribution of oral Candida dubliniensis strains in human immunodeficiency virus-infected individuals. J. Clin. Microbiol. 35, 960–964. doi: 10.1128/jcm.35.4.960-964.1997 PubMed DOI PMC
Sullivan D. J., Westerneng T. J., Haynes K. A., Bennett D. E., Coleman D. C. (1995). Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiol. Read. Engl. 141 (Pt 7), 1507–1521. doi: 10.1099/13500872-141-7-1507 PubMed DOI
The ADA Division of Communications. The Journal of the American Dental Association and the ADA Council on Scientific Affairs (2005). Tooth eruption: The primary teeth. J. Am. Dent. Assoc. 136, 1619. doi: 10.14219/jada.archive.2005.0095 PubMed DOI
The WHO (2021) Child growth standards. Available at: https://www.who.int/tools/child-growth-standards (Accessed July 30, 2021).
Toumba K. J., Twetman S., Splieth C., Parnell C., van Loveren C., Lygidakis N.A. (2019). Guidelines on the use of fluoride for caries prevention in children: an updated EAPD policy document. Eur. Arch. Paediatr. Dent. 20, 507–516. doi: 10.1007/s40368-019-00464-2 PubMed DOI
van Meijeren-van Lunteren A. W., Voortman T., Elfrink M. E. C., Wolvius E. B., Kragt L. (2021). Breastfeeding and childhood dental caries: Results from a socially diverse birth cohort study. Caries Res. 55, 153–161. doi: 10.1159/000514502 PubMed DOI PMC
Xiao J., Grier A., Faustoferri R. C., Alzoubi S., Gill A. L., Feng C., et al. . (2018. a). Association between oral candida and bacteriome in children with severe ECC. J. Dent. Res. 97, 1468–1476. doi: 10.1177/0022034518790941 PubMed DOI PMC
Xiao J., Huang X., Alkhers N., Alzamil H., Alzoubi S., Wu T. T., et al. . (2018. b). Candida albicans and early childhood caries: A systematic review and meta-analysis. Caries Res. 52, 102–112. doi: 10.1159/000481833 PubMed DOI PMC