Miro proteins and their role in mitochondrial transfer in cancer and beyond

. 2022 ; 10 () : 937753. [epub] 20220725

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35959487

Mitochondria are organelles essential for tumor cell proliferation and metastasis. Although their main cellular function, generation of energy in the form of ATP is dispensable for cancer cells, their capability to drive their adaptation to stress originating from tumor microenvironment makes them a plausible therapeutic target. Recent research has revealed that cancer cells with damaged oxidative phosphorylation import healthy (functional) mitochondria from surrounding stromal cells to drive pyrimidine synthesis and cell proliferation. Furthermore, it has been shown that energetically competent mitochondria are fundamental for tumor cell migration, invasion and metastasis. The spatial positioning and transport of mitochondria involves Miro proteins from a subfamily of small GTPases, localized in outer mitochondrial membrane. Miro proteins are involved in the structure of the MICOS complex, connecting outer and inner-mitochondrial membrane; in mitochondria-ER communication; Ca2+ metabolism; and in the recycling of damaged organelles via mitophagy. The most important role of Miro is regulation of mitochondrial movement and distribution within (and between) cells, acting as an adaptor linking organelles to cytoskeleton-associated motor proteins. In this review, we discuss the function of Miro proteins in various modes of intercellular mitochondrial transfer, emphasizing the structure and dynamics of tunneling nanotubes, the most common transfer modality. We summarize the evidence for and propose possible roles of Miro proteins in nanotube-mediated transfer as well as in cancer cell migration and metastasis, both processes being tightly connected to cytoskeleton-driven mitochondrial movement and positioning.

Zobrazit více v PubMed

Acquistapace A., Bru T., Lesault P. F., Figeac F., Coudert A. E., le Coz O., et al. (2011). Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 29 (5), 812–824. 10.1002/stem.632 PubMed DOI PMC

Ady J. W., Desir S., Thayanithy V., Vogel R. I., Moreira A. L., Downey R. J., et al. (2014). Intercellular communication in malignant pleural mesothelioma: Properties of tunneling nanotubes. Front. Physiol. 5, 400. 10.3389/fphys.2014.00400 PubMed DOI PMC

Aguilar P. S., Baylies M. K., Fleissner A., Helming L., Inoue N., Podbilewicz B., et al. (2013). Genetic basis of cell-cell fusion mechanisms. Trends Genet. 29 (7), 427–437. 10.1016/j.tig.2013.01.011 PubMed DOI PMC

Ahmad T., Mukherjee S., Pattnaik B., Kumar M., Singh S., Kumar M., et al. (2014). Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33 (9), 994–1010. 10.1002/embj.201386030 PubMed DOI PMC

Allegra A., Di Gioacchino M., Cancemi G., Casciaro M., Petrarca C., Musolino C., et al. (2022). Specialized intercellular communications via tunnelling nanotubes in acute and chronic leukemia. Cancers (Basel) 14 (3), 659. 10.3390/cancers14030659 PubMed DOI PMC

Alshaabi H., Heininger M., Cunniff B. (2020). Dynamic regulation of subcellular mitochondrial position for localized metabolite levels. J. Biochem. 167 (2), 109–117. 10.1093/jb/mvz058 PubMed DOI

Alshaabi H., Shannon N., Gravelle R., Milczarek S., Messier T., Cunniff B., et al. (2021). Miro1-mediated mitochondrial positioning supports subcellular redox status. Redox Biol. 38, 101818. 10.1016/j.redox.2020.101818 PubMed DOI PMC

Altieri D. C. (2017). Mitochondria on the move: Emerging paradigms of organelle trafficking in tumour plasticity and metastasis. Br. J. Cancer 117 (3), 301–305. 10.1038/bjc.2017.201 PubMed DOI PMC

Amari L., Germain M. (2021). Mitochondrial extracellular vesicles - origins and roles. Front. Mol. Neurosci. 14, 767219. 10.3389/fnmol.2021.767219 PubMed DOI PMC

Andresen V., Wang X., Ghimire S., Omsland M., Gjertsen B. T., Gerdes H. H., et al. (2013). Tunneling nanotube (TNT) formation is independent of p53 expression. Cell. Death Differ. 20 (8), 1124. 10.1038/cdd.2013.61 PubMed DOI PMC

Antanaviciute I., Rysevaite K., Liutkevicius V., Marandykina A., Rimkute L., Sveikatiene R., et al. (2014). Long-distance communication between laryngeal carcinoma cells. PLoS One 9 (6), e99196. 10.1371/journal.pone.0099196 PubMed DOI PMC

Austefjord M. W., Gerdes H. H., Wang X. (2014). Tunneling nanotubes: Diversity in morphology and structure. Commun. Integr. Biol. 7 (1), e27934. 10.4161/cib.27934 PubMed DOI PMC

Babenko V. A., Silachev D. N., Popkov V. A., Zorova L. D., Pevzner I. B., Plotnikov E. Y., et al. (2018). Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules 23 (3), 687. 10.3390/molecules23030687 PubMed DOI PMC

Babula P., Krizanova O. (2022). Involvement of calcium signaling in different types of cell death in cancer. Neoplasma 69 (2), 264–273. 10.4149/neo_2022_220127N121 PubMed DOI

Bajzikova M., Kovarova J., Coelho A. R., Boukalova S., Oh S., Rohlenova K., et al. (2019). Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell. Metab. 29 (2), 399–416. e310. 10.1016/j.cmet.2018.10.014 PubMed DOI PMC

Barutta F., Kimura S., Hase K., Bellini S., Corbetta B., Corbelli A., et al. (2021). Protective role of the M-sec-tunneling nanotube system in podocytes. J. Am. Soc. Nephrol. 32 (5), 1114–1130. 10.1681/ASN.2020071076 PubMed DOI PMC

Beljan S., Herak Bosnar M., Cetkovic H. (2020). Rho family of ras-like GTPases in early-branching animals. Cells 9 (10), E2279. 10.3390/cells9102279 PubMed DOI PMC

Berenguer-Escuder C., Grossmann D., Antony P., Arena G., Wasner K., Massart F., et al. (2020). Impaired mitochondrial-endoplasmic reticulum interaction and mitophagy in Miro1-mutant neurons in Parkinson's disease. Hum. Mol. Genet. 29 (8), 1353–1364. 10.1093/hmg/ddaa066 PubMed DOI PMC

Berenguer-Escuder C., Grossmann D., Massart F., Antony P., Burbulla L. F., Glaab E., et al. (2019). Variants in Miro1 cause alterations of ER-mitochondria contact sites in fibroblasts from Parkinson's disease patients. J. Clin. Med. 8 (12), E2226. 10.3390/jcm8122226 PubMed DOI PMC

Berridge M. V., McConnell M. J., Grasso C., Bajzikova M., Kovarova J., Neuzil J., et al. (2016). Horizontal transfer of mitochondria between mammalian cells: Beyond co-culture approaches. Curr. Opin. Genet. Dev. 38, 75–82. 10.1016/j.gde.2016.04.003 PubMed DOI

Berridge M. V., Neuzil J. (2017). The mobility of mitochondria: Intercellular trafficking in health and disease. Clin. Exp. Pharmacol. Physiol. 44 (Suppl. 1), 15–20. 10.1111/1440-1681.12764 PubMed DOI

Bingol B., Tea J. S., Phu L., Reichelt M., Bakalarski C. E., Song Q., et al. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510 (7505), 370–375. 10.1038/nature13418 PubMed DOI

Birsa N., Norkett R., Wauer T., Mevissen T. E., Wu H. C., Foltynie T., et al. (2014). Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J. Biol. Chem. 289 (21), 14569–14582. 10.1074/jbc.M114.563031 PubMed DOI PMC

Bocanegra J. L., Fujita B. M., Melton N. R., Cowan J. M., Schinski E. L., Tamir T. Y., et al. (2020). The MyMOMA domain of MYO19 encodes for distinct Miro-dependent and Miro-independent mechanisms of interaction with mitochondrial membranes. Cytoskelet. Hob. 77 (3-4), 149–166. 10.1002/cm.21560 PubMed DOI PMC

Boukalova S., Hubackova S., Milosevic M., Ezrova Z., Neuzil J., Rohlena J., et al. (2020). Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim. Biophys. Acta. Mol. Basis Dis. 1866 (6), 165759. 10.1016/j.bbadis.2020.165759 PubMed DOI

Brickley K., Smith M. J., Beck M., Stephenson F. A. (2005). GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: Association in vivo and in vitro with kinesin. J. Biol. Chem. 280 (15), 14723–14732. 10.1074/jbc.M409095200 PubMed DOI

Brunelli F., Valente E. M., Arena G. (2020). Mechanisms of neurodegeneration in Parkinson's disease: Keep neurons in the PINK1. Mech. Ageing Dev. 189, 111277. 10.1016/j.mad.2020.111277 PubMed DOI

Caicedo A., Fritz V., Brondello J. M., Ayala M., Dennemont I., Abdellaoui N., et al. (2015). MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep. 5, 9073. 10.1038/srep09073 PubMed DOI PMC

Caino M. C., Ghosh J. C., Chae Y. C., Vaira V., Rivadeneira D. B., Faversani A., et al. (2015). PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc. Natl. Acad. Sci. U. S. A. 112 (28), 8638–8643. 10.1073/pnas.1500722112 PubMed DOI PMC

Caino M. C., Seo J. H., Aguinaldo A., Wait E., Bryant K. G., Kossenkov A. V., et al. (2016). A neuronal network of mitochondrial dynamics regulates metastasis. Nat. Commun. 7, 13730. 10.1038/ncomms13730 PubMed DOI PMC

Caino M. C., Seo J. H., Wang Y., Rivadeneira D. B., Gabrilovich D. I., Kim E. T., et al. (2017). Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J. Clin. Invest. 127 (10), 3755–3769. 10.1172/JCI93172 PubMed DOI PMC

Cameron J. M., Gabrielsen M., Chim Y. H., Munro J., McGhee E. J., Sumpton D., et al. (2015). Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation. Curr. Biol. 25 (11), 1520–1525. 10.1016/j.cub.2015.04.020 PubMed DOI PMC

Cao Y., Xu C., Ye J., He Q., Zhang X., Jia S., et al. (2019). Miro2 regulates inter-mitochondrial communication in the heart and protects against TAC-induced cardiac dysfunction. Circ. Res. 125 (8), 728–743. 10.1161/CIRCRESAHA.119.315432 PubMed DOI

Castro I. G., Richards D. M., Metz J., Costello J. L., Passmore J. B., Schrader T. A., et al. (2018). A role for Mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic 19 (3), 229–242. 10.1111/tra.12549 PubMed DOI PMC

Castro I. G., Schrader M. (2018). Miro1 - the missing link to peroxisome motility. Commun. Integr. Biol. 11 (4), e1526573. 10.1080/19420889.2018.1526573 PubMed DOI PMC

Chang K. T., Niescier R. F., Min K. T. (2011). Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc. Natl. Acad. Sci. U. S. A. 108 (37), 15456–15461. 10.1073/pnas.1106862108 PubMed DOI PMC

Chen X., Xu W., Zhuo S., Chen X., Chen P., Guan S., et al. (2021). Syntaphilin downregulation facilitates radioresistance via mediating mitochondria distribution in esophageal squamous cell carcinoma. Free Radic. Biol. Med. 165, 348–359. 10.1016/j.freeradbiomed.2021.01.056 PubMed DOI

Choubey V., Cagalinec M., Liiv J., Safiulina D., Hickey M. A., Kuum M., et al. (2014). BECN1 is involved in the initiation of mitophagy: It facilitates PARK2 translocation to mitochondria. Autophagy 10 (6), 1105–1119. 10.4161/auto.28615 PubMed DOI PMC

Cordero Cervantes D., Zurzolo C. (2021). Peering into tunneling nanotubes-The path forward. EMBO J. 40 (8), e105789. 10.15252/embj.2020105789 PubMed DOI PMC

Craig S. N., Wyatt M. D., McInnes C. (2014). Current assessment of polo-like kinases as anti-tumor drug targets. Expert Opin. Drug Discov. 9 (7), 773–789. 10.1517/17460441.2014.918100 PubMed DOI

Crewe C., Funcke J. B., Li S., Joffin N., Gliniak C. M., Ghaben A. L., et al. (2021). Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell. Metab. 33 (9), 1853–1868. e11. 10.1016/j.cmet.2021.08.002 PubMed DOI PMC

Cunniff B., McKenzie A. J., Heintz N. H., Howe A. K. (2016). AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol. Biol. Cell. 27 (17), 2662–2674. 10.1091/mbc.E16-05-0286 PubMed DOI PMC

D'Aloia A., Arrigoni E., Costa B., Berruti G., Martegani E., Sacco E., et al. (2021). RalGPS2 interacts with Akt and PDK1 promoting tunneling nanotubes formation in bladder cancer and kidney cells microenvironment. Cancers (Basel) 13 (24), 6330. 10.3390/cancers13246330 PubMed DOI PMC

Dagar S., Pathak D., Oza H. V., Mylavarapu S. V. S. (2021). Tunneling nanotubes and related structures: Molecular mechanisms of formation and function. Biochem. J. 478 (22), 3977–3998. 10.1042/BCJ20210077 PubMed DOI

Davis C. H., Kim K. Y., Bushong E. A., Mills E. A., Boassa D., Shih T., et al. (2014). Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. U. S. A. 111 (26), 9633–9638. 10.1073/pnas.1404651111 PubMed DOI PMC

Denisenko T. V., Gogvadze V., Zhivotovsky B. (2021). Mitophagy in carcinogenesis and cancer treatment. Discov. Oncol. 12 (1), 58. 10.1007/s12672-021-00454-1 PubMed DOI PMC

Desai R., East D. A., Hardy L., Faccenda D., Rigon M., Crosby J., et al. (2020). Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci. Adv. 6 (51), eabc9955. 10.1126/sciadv.abc9955 PubMed DOI PMC

Desai S. P., Bhatia S. N., Toner M., Irimia D. (2013). Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys. J. 104 (9), 2077–2088. 10.1016/j.bpj.2013.03.025 PubMed DOI PMC

Desir S., Dickson E. L., Vogel R. I., Thayanithy V., Wong P., Teoh D., et al. (2016). Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. Oncotarget 7 (28), 43150–43161. 10.18632/oncotarget.9504 PubMed DOI PMC

Desir S., O'Hare P., Vogel R. I., Sperduto W., Sarkari A., Dickson E. L., et al. (2018). Chemotherapy-induced tunneling nanotubes mediate intercellular drug efflux in pancreatic cancer. Sci. Rep. 8 (1), 9484. 10.1038/s41598-018-27649-x PubMed DOI PMC

Diao R. Y., Gustafsson A. B. (2022). Mitochondrial quality surveillance: Mitophagy in cardiovascular health and disease. Am. J. Physiol. Cell. Physiol. 322 (2), C218–C230. 10.1152/ajpcell.00360.2021 PubMed DOI PMC

Dong L. F., Kovarova J., Bajzikova M., Bezawork-Geleta A., Svec D., Endaya B., et al. (2017). Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 6, e22187. 10.7554/eLife.22187 PubMed DOI PMC

Drab M., Stopar D., Kralj-Iglic V., Iglic A. (2019). Inception mechanisms of tunneling nanotubes. Cells 8 (6), E626. 10.3390/cells8060626 PubMed DOI PMC

Dubois F., Benard M., Jean-Jacques B., Schapman D., Roberge H., Lebon A., et al. (2020). Investigating tunneling nanotubes in cancer cells: Guidelines for structural and functional studies through cell imaging. Biomed. Res. Int. 2020, 2701345. 10.1155/2020/2701345 PubMed DOI PMC

Dupont M., Souriant S., Lugo-Villarino G., Maridonneau-Parini I., Verollet C. (2018). Tunneling nanotubes: Intimate communication between myeloid cells. Front. Immunol. 9, 43. 10.3389/fimmu.2018.00043 PubMed DOI PMC

Eberhardt E. L., Ludlam A. V., Tan Z., Cianfrocco M. A. (2020). Miro: A molecular switch at the center of mitochondrial regulation. Protein Sci. 29 (6), 1269–1284. 10.1002/pro.3839 PubMed DOI PMC

Elfarrash S., Jensen N. M., Ferreira N., Schmidt S. I., Gregersen E., Vestergaard M. V., et al. (2021). Polo-like kinase 2 inhibition reduces serine-129 phosphorylation of physiological nuclear alpha-synuclein but not of the aggregated alpha-synuclein. PLoS One 16 (10), e0252635. 10.1371/journal.pone.0252635 PubMed DOI PMC

English K., Shepherd A., Uzor N. E., Trinh R., Kavelaars A., Heijnen C. J., et al. (2020). Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol. Commun. 8 (1), 36. 10.1186/s40478-020-00897-7 PubMed DOI PMC

Franchi M., Piperigkou Z., Riti E., Masola V., Onisto M., Karamanos N. K., et al. (2020). Long filopodia and tunneling nanotubes define new phenotypes of breast cancer cells in 3D cultures. Matrix Biol. Plus 6-7, 100026. 10.1016/j.mbplus.2020.100026 PubMed DOI PMC

Fransson S., Ruusala A., Aspenstrom P. (2006). The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem. Biophys. Res. Commun. 344 (2), 500–510. 10.1016/j.bbrc.2006.03.163 PubMed DOI

Frederick R. L., McCaffery J. M., Cunningham K. W., Okamoto K., Shaw J. M. (2004). Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J. Cell. Biol. 167 (1), 87–98. 10.1083/jcb.200405100 PubMed DOI PMC

Friedman J. R., Lackner L. L., West M., DiBenedetto J. R., Nunnari J., Voeltz G. K., et al. (2011). ER tubules mark sites of mitochondrial division. Science 334 (6054), 358–362. 10.1126/science.1207385 PubMed DOI PMC

Furnish M., Boulton D. P., Genther V., Grofova D., Ellinwood M. L., Romero L., et al. (2022). MIRO2 regulates prostate cancer cell growth via GCN1-dependent stress signaling. Mol. Cancer Res. 20 (4), 607–621. 10.1158/1541-7786.MCR-21-0374 PubMed DOI PMC

Furnish M., Caino M. C. (2020). Altered mitochondrial trafficking as a novel mechanism of cancer metastasis. Cancer Rep. 3 (1), e1157. 10.1002/cnr2.1157 PubMed DOI PMC

Gardel M. L., Schneider I. C., Aratyn-Schaus Y., Waterman C. M. (2010). Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell. Dev. Biol. 26, 315–333. 10.1146/annurev.cellbio.011209.122036 PubMed DOI PMC

Geisler S., Holmstrom K. M., Skujat D., Fiesel F. C., Rothfuss O. C., Kahle P. J., et al. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell. Biol. 12 (2), 119–131. 10.1038/ncb2012 PubMed DOI

Gerdes H. H., Carvalho R. N. (2008). Intercellular transfer mediated by tunneling nanotubes. Curr. Opin. Cell. Biol. 20 (4), 470–475. 10.1016/j.ceb.2008.03.005 PubMed DOI

Ghosh J. C., Perego M., Agarwal E., Bertolini I., Wang Y., Goldman A. R., et al. (2022). Ghost mitochondria drive metastasis through adaptive GCN2/Akt therapeutic vulnerability. Proc. Natl. Acad. Sci. U. S. A. 119 (8), e2115624119. 10.1073/pnas.2115624119 PubMed DOI PMC

Glater E. E., Megeath L. J., Stowers R. S., Schwarz T. L. (2006). Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell. Biol. 173 (4), 545–557. 10.1083/jcb.200601067 PubMed DOI PMC

Goodenough D. A., Goliger J. A., Paul D. L. (1996). Connexins, connexons, and intercellular communication. Annu. Rev. Biochem. 65, 475–502. 10.1146/annurev.bi.65.070196.002355 PubMed DOI

Gousset K., Marzo L., Commere P. H., Zurzolo C. (2013). Myo10 is a key regulator of TNT formation in neuronal cells. J. Cell. Sci. 126 (Pt 19), 4424–4435. 10.1242/jcs.129239 PubMed DOI

Greene A. W., Grenier K., Aguileta M. A., Muise S., Farazifard R., Haque M. E., et al. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13 (4), 378–385. 10.1038/embor.2012.14 PubMed DOI PMC

Grossmann D., Berenguer-Escuder C., Bellet M. E., Scheibner D., Bohler J., Massart F., et al. (2019). Mutations in RHOT1 disrupt endoplasmic reticulum-mitochondria contact sites interfering with calcium homeostasis and mitochondrial dynamics in Parkinson's disease. Antioxid. Redox Signal. 31 (16), 1213–1234. 10.1089/ars.2018.7718 PubMed DOI PMC

Grossmann D., Berenguer-Escuder C., Chemla A., Arena G., Kruger R. (2020). The emerging role of RHOT1/Miro1 in the pathogenesis of Parkinson's Disease. Front. Neurol. 11, 587. 10.3389/fneur.2020.00587 PubMed DOI PMC

Guillen-Samander A., Leonzino M., Hanna M. G., Tang N., Shen H., De Camilli P., et al. (2021). VPS13D bridges the ER to mitochondria and peroxisomes via Miro. J. Cell. Biol. 220 (5), e202010004. 10.1083/jcb.202010004 PubMed DOI PMC

Guo X., Macleod G. T., Wellington A., Hu F., Panchumarthi S., Schoenfield M., et al. (2005). The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47 (3), 379–393. 10.1016/j.neuron.2005.06.027 PubMed DOI

Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., et al. (2013). Autophagosomes form at ER-mitochondria contact sites. Nature 495 (7441), 389–393. 10.1038/nature11910 PubMed DOI

Hanna S. J., McCoy-Simandle K., Miskolci V., Guo P., Cammer M., Hodgson L., et al. (2017). The role of rho-GTPases and actin polymerization during macrophage tunneling nanotube biogenesis. Sci. Rep. 7 (1), 8547. 10.1038/s41598-017-08950-7 PubMed DOI PMC

Hase K., Kimura S., Takatsu H., Ohmae M., Kawano S., Kitamura H., et al. (2009). M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell. Biol. 11 (12), 1427–1432. 10.1038/ncb1990 PubMed DOI

Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., et al. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535 (7613), 551–555. 10.1038/nature18928 PubMed DOI PMC

He K., Shi X., Zhang X., Dang S., Ma X., Liu F., et al. (2011). Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc. Res. 92 (1), 39–47. 10.1093/cvr/cvr189 PubMed DOI

Hekmatshoar Y., Nakhle J., Galloni M., Vignais M. L. (2018). The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem. J. 475 (14), 2305–2328. 10.1042/BCJ20170712 PubMed DOI

Hoppins S., Collins S. R., Cassidy-Stone A., Hummel E., Devay R. M., Lackner L. L., et al. (2011). A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell. Biol. 195 (2), 323–340. 10.1083/jcb.201107053 PubMed DOI PMC

Hwang M. J., Bryant K. G., Seo J. H., Liu Q., Humphrey P. A., Melnick M. A. C., et al. (2019). Syntaphilin is a novel biphasic biomarker of aggressive prostate cancer and a metastasis predictor. Am. J. Pathol. 189 (6), 1180–1189. 10.1016/j.ajpath.2019.02.009 PubMed DOI PMC

Imai Y. (2020). PINK1-Parkin signaling in Parkinson's disease: Lessons from Drosophila. Neurosci. Res. 159, 40–46. 10.1016/j.neures.2020.01.016 PubMed DOI

Islam M. N., Das S. R., Emin M. T., Wei M., Sun L., Westphalen K., et al. (2012). Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18 (5), 759–765. 10.1038/nm.2736 PubMed DOI PMC

Jiang D., Gao F., Zhang Y., Wong D. S., Li Q., Tse H. F., et al. (2016). Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell. Death Dis. 7 (11), e2467. 10.1038/cddis.2016.358 PubMed DOI PMC

Jiang H., He C., Geng S., Sheng H., Shen X., Zhang X., et al. (2012). RhoT1 and Smad4 are correlated with lymph node metastasis and overall survival in pancreatic cancer. PLoS One 7 (7), e42234. 10.1371/journal.pone.0042234 PubMed DOI PMC

Kalinski A. L., Kar A. N., Craver J., Tosolini A. P., Sleigh J. N., Lee S. J., et al. (2019). Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J. Cell. Biol. 218 (6), 1871–1890. 10.1083/jcb.201702187 PubMed DOI PMC

Kane L. A., Lazarou M., Fogel A. I., Li Y., Yamano K., Sarraf S. A., et al. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell. Biol. 205 (2), 143–153. 10.1083/jcb.201402104 PubMed DOI PMC

Kato K., Nguyen K. T., Decker C. W., Silkwood K. H., Eck S. M., Hernandez J. B., et al. (2022). Tunneling nanotube formation promotes survival against 5-fluorouracil in MCF-7 breast cancer cells. FEBS Open Bio 12 (1), 203–210. 10.1002/2211-5463.13324 PubMed DOI PMC

Kay L., Pienaar I. S., Cooray R., Black G., Soundararajan M. (2018). Understanding Miro GTPases: Implications in the treatment of neurodegenerative disorders. Mol. Neurobiol. 55 (9), 7352–7365. 10.1007/s12035-018-0927-x PubMed DOI PMC

Kesharwani R., Sarmah D., Kaur H., Mounika L., Verma G., Pabbala V., et al. (2019). Interplay between mitophagy and inflammasomes in neurological disorders. ACS Chem. Neurosci. 10 (5), 2195–2208. 10.1021/acschemneuro.9b00117 PubMed DOI

Khattar K. E., Safi J., Rodriguez A. M., Vignais M. L. (2022). Intercellular communication in the brain through tunneling nanotubes. Cancers (Basel) 14 (5), 1207. 10.3390/cancers14051207 PubMed DOI PMC

Kimura S., Yamashita M., Yamakami-Kimura M., Sato Y., Yamagata A., Kobashigawa Y., et al. (2016). Distinct roles for the N- and C-terminal regions of M-sec in plasma membrane deformation during tunneling nanotube formation. Sci. Rep. 6, 33548. 10.1038/srep33548 PubMed DOI PMC

Kittler J. (2015). Regulation of mitochondrial trafficking, function and quality control by the mitochondrial GTPases Miro1 and Miro2. Springerplus 4 (Suppl. 1), L33. 10.1186/2193-1801-4-S1-L33 PubMed DOI PMC

Klosowiak J. L., Focia P. J., Chakravarthy S., Landahl E. C., Freymann D. M., Rice S. E., et al. (2013). Structural coupling of the EF hand and C-terminal GTPase domains in the mitochondrial protein Miro. EMBO Rep. 14 (11), 968–974. 10.1038/embor.2013.151 PubMed DOI PMC

Konig T., Nolte H., Aaltonen M. J., Tatsuta T., Krols M., Stroh T., et al. (2021). MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat. Cell. Biol. 23 (12), 1271–1286. 10.1038/s41556-021-00798-4 PubMed DOI

Kornmann B., Osman C., Walter P. (2011). The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc. Natl. Acad. Sci. U. S. A. 108 (34), 14151–14156. 10.1073/pnas.1111314108 PubMed DOI PMC

Korobova F., Gauvin T. J., Higgs H. N. (2014). A role for myosin II in mammalian mitochondrial fission. Curr. Biol. 24 (4), 409–414. 10.1016/j.cub.2013.12.032 PubMed DOI PMC

Koshiba T., Holman H. A., Kubara K., Yasukawa K., Kawabata S., Okamoto K., et al. (2011). Structure-function analysis of the yeast mitochondrial Rho GTPase, Gem1p: Implications for mitochondrial inheritance. J. Biol. Chem. 286 (1), 354–362. 10.1074/jbc.M110.180034 PubMed DOI PMC

Kretschmer A., Zhang F., Somasekharan S. P., Tse C., Leachman L., Gleave A., et al. (2019). Stress-induced tunneling nanotubes support treatment adaptation in prostate cancer. Sci. Rep. 9 (1), 7826. 10.1038/s41598-019-44346-5 PubMed DOI PMC

Kruppa A. J., Kishi-Itakura C., Masters T. A., Rorbach J. E., Grice G. L., Kendrick-Jones J., et al. (2018). Myosin VI-dependent actin cages encapsulate parkin-positive damaged mitochondria. Dev. Cell. 44 (4), 484–499. 10.1016/j.devcel.2018.01.007 PubMed DOI PMC

Lahiri V., Klionsky D. J. (2017). Functional impairment in RHOT1/Miro1 degradation and mitophagy is a shared feature in familial and sporadic Parkinson disease. Autophagy 13 (8), 1259–1261. 10.1080/15548627.2017.1327512 PubMed DOI PMC

Latario C. J., Schoenfeld L. W., Howarth C. L., Pickrell L. E., Begum F., Fischer D. A., et al. (2020). Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner. Mol. Biol. Cell. 31 (12), 1259–1272. 10.1091/mbc.E19-11-0605 PubMed DOI PMC

Lazar S., Goldfinger L. E. (2021). Platelets and extracellular vesicles and their cross talk with cancer. Blood 137 (23), 3192–3200. 10.1182/blood.2019004119 PubMed DOI PMC

Lazarou M., Sliter D. A., Kane L. A., Sarraf S. A., Wang C., Burman J. L., et al. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524 (7565), 309–314. 10.1038/nature14893 PubMed DOI PMC

Lee C. A., Chin L. S., Li L. (2018). Hypertonia-linked protein Trak1 functions with mitofusins to promote mitochondrial tethering and fusion. Protein Cell. 9 (8), 693–716. 10.1007/s13238-017-0469-4 PubMed DOI PMC

Lee K. S., Huh S., Lee S., Wu Z., Kim A. K., Kang H. Y., et al. (2018). Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc. Natl. Acad. Sci. U. S. A. 115 (38), E8844–E8853. 10.1073/pnas.1721136115 PubMed DOI PMC

Lee S., Lee K. S., Huh S., Liu S., Lee D. Y., Hong S. H., et al. (2016). Polo kinase phosphorylates Miro to control ER-mitochondria contact sites and mitochondrial Ca(2+) homeostasis in neural stem cell development. Dev. Cell. 37 (2), 174–189. 10.1016/j.devcel.2016.03.023 PubMed DOI PMC

Lee Y. G., Park D. H., Chae Y. C. (2022). Role of mitochondrial stress response in cancer progression. Cells 11 (5), 771. 10.3390/cells11050771 PubMed DOI PMC

Levoux J., Prola A., Lafuste P., Gervais M., Chevallier N., Koumaiha Z., et al. (2021). Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell. Metab. 33 (3), 688–690. 10.1016/j.cmet.2021.02.003 PubMed DOI

Li B., Zhang Y., Li H., Shen H., Wang Y., Li X., et al. (2020). Miro1 regulates neuronal mitochondrial transport and distribution to alleviate neuronal damage in secondary brain injury after intracerebral hemorrhage in rats. Cell. Mol. Neurobiol. 41, 795–812. published online 2020 June 4. 10.1007/s10571-020-00887-2 PubMed DOI

Li Q., Yao L., Wei Y., Geng S., He C., Jiang H., et al. (2015). Role of RHOT1 on migration and proliferation of pancreatic cancer. Am. J. Cancer Res. 5 (4), 1460–1470. PubMed PMC

Li X., Wang R., Xun X., Jiao W., Zhang M., Wang S., et al. (2015). The Rho GTPase family genes in Bivalvia genomes: Sequence, evolution and expression analysis. PLoS One 10 (12), e0143932. 10.1371/journal.pone.0143932 PubMed DOI PMC

Liu K., Ji K., Guo L., Wu W., Lu H., Shan P., et al. (2014). Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res. 92, 10–18. 10.1016/j.mvr.2014.01.008 PubMed DOI

Ljubojevic N., Henderson J. M., Zurzolo C. (2021). The ways of actin: Why tunneling nanotubes are unique cell protrusions. Trends Cell. Biol. 31 (2), 130–142. 10.1016/j.tcb.2020.11.008 PubMed DOI

Lopez-Domenech G., Covill-Cooke C., Ivankovic D., Halff E. F., Sheehan D. F., Norkett R., et al. (2018). Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37 (3), 321–336. 10.15252/embj.201696380 PubMed DOI PMC

Lopez-Domenech G., Higgs N. F., Vaccaro V., Ros H., Arancibia-Carcamo I. L., MacAskill A. F., et al. (2016). Loss of dendritic complexity precedes neurodegeneration in a mouse model with disrupted mitochondrial distribution in mature dendrites. Cell. Rep. 17 (2), 317–327. 10.1016/j.celrep.2016.09.004 PubMed DOI PMC

Lotfi S., Nasser H., Noyori O., Hiyoshi M., Takeuchi H., Koyanagi Y., et al. (2020). M-Sec facilitates intercellular transmission of HIV-1 through multiple mechanisms. Retrovirology 17 (1), 20. 10.1186/s12977-020-00528-y PubMed DOI PMC

Lou E., Fujisawa S., Barlas A., Romin Y., Manova-Todorova K., Moore M. A., et al. (2012a). Tunneling nanotubes: A new paradigm for studying intercellular communication and therapeutics in cancer. Commun. Integr. Biol. 5 (4), 399–403. 10.4161/cib.20569 PubMed DOI PMC

Lou E., Fujisawa S., Morozov A., Barlas A., Romin Y., Dogan Y., et al. (2012b). Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 7 (3), e33093. 10.1371/journal.pone.0033093 PubMed DOI PMC

Lu J., Zheng X., Li F., Yu Y., Chen Z., Liu Z., et al. (2017). Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget 8 (9), 15539–15552. 10.18632/oncotarget.14695 PubMed DOI PMC

Luchetti F., Canonico B., Arcangeletti M., Guescini M., Cesarini E., Stocchi V., et al. (2012). Fas signalling promotes intercellular communication in T cells. PLoS One 7 (4), e35766. 10.1371/journal.pone.0035766 PubMed DOI PMC

MacAskill A. F., Brickley K., Stephenson F. A., Kittler J. T. (2009a). GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons. Mol. Cell. Neurosci. 40 (3), 301–312. 10.1016/j.mcn.2008.10.016 PubMed DOI

MacAskill A. F., Kittler J. T. (2010). Control of mitochondrial transport and localization in neurons. Trends Cell. Biol. 20 (2), 102–112. 10.1016/j.tcb.2009.11.002 PubMed DOI

MacAskill A. F., Rinholm J. E., Twelvetrees A. E., Arancibia-Carcamo I. L., Muir J., Fransson A., et al. (2009b). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61 (4), 541–555. 10.1016/j.neuron.2009.01.030 PubMed DOI PMC

Mahrouf-Yorgov M., Augeul L., Da Silva C. C., Jourdan M., Rigolet M., Manin S., et al. (2017). Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell. Death Differ. 24 (7), 1224–1238. 10.1038/cdd.2017.51 PubMed DOI PMC

Marlein C. R., Piddock R. E., Mistry J. J., Zaitseva L., Hellmich C., Horton R. H., et al. (2019). CD38-Driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 79 (9), 2285–2297. 10.1158/0008-5472.CAN-18-0773 PubMed DOI

Marlein C. R., Zaitseva L., Piddock R. E., Robinson S. D., Edwards D. R., Shafat M. S., et al. (2017). NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130 (14), 1649–1660. 10.1182/blood-2017-03-772939 PubMed DOI

Mbefo M. K., Paleologou K. E., Boucharaba A., Oueslati A., Schell H., Fournier M., et al. (2010). Phosphorylation of synucleins by members of the Polo-like kinase family. J. Biol. Chem. 285 (4), 2807–2822. 10.1074/jbc.M109.081950 PubMed DOI PMC

Mills K. M., Brocardo M. G., Henderson B. R. (2016). APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane. Mol. Biol. Cell. 27 (3), 466–482. 10.1091/mbc.E15-09-0632 PubMed DOI PMC

Misko A., Jiang S., Wegorzewska I., Milbrandt J., Baloh R. H. (2010). Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30 (12), 4232–4240. 10.1523/JNEUROSCI.6248-09.2010 PubMed DOI PMC

Mittal R., Karhu E., Wang J. S., Delgado S., Zukerman R., Mittal J., et al. (2019). Cell communication by tunneling nanotubes: Implications in disease and therapeutic applications. J. Cell. Physiol. 234 (2), 1130–1146. 10.1002/jcp.27072 PubMed DOI

Mittelbrunn M., Sanchez-Madrid F. (2012). Intercellular communication: Diverse structures for exchange of genetic information. Nat. Rev. Mol. Cell. Biol. 13 (5), 328–335. 10.1038/nrm3335 PubMed DOI PMC

Modi S., Lopez-Domenech G., Halff E. F., Covill-Cooke C., Ivankovic D., Melandri D., et al. (2019). Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat. Commun. 10 (1), 4399. 10.1038/s41467-019-12382-4 PubMed DOI PMC

Moore D. J., West A. B., Dikeman D. A., Dawson V. L., Dawson T. M. (2008). Parkin mediates the degradation-independent ubiquitination of Hsp70. J. Neurochem. 105 (5), 1806–1819. 10.1111/j.1471-4159.2008.05261.x PubMed DOI PMC

Moschoi R., Imbert V., Nebout M., Chiche J., Mary D., Prebet T., et al. (2016). Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128 (2), 253–264. 10.1182/blood-2015-07-655860 PubMed DOI

Nahacka Z., Zobalova R., Dubisova M., Rohlena J., Neuzil J. (2021). Miro proteins connect mitochondrial function and intercellular transport. Crit. Rev. Biochem. Mol. Biol. 56 (4), 401–425. 10.1080/10409238.2021.1925216 PubMed DOI

Naik M. U., Pham N. T., Beebe K., Dai W., Naik U. P. (2011). Calcium-dependent inhibition of polo-like kinase 3 activity by CIB1 in breast cancer cells. Int. J. Cancer 128 (3), 587–596. 10.1002/ijc.25388 PubMed DOI PMC

Nguyen E. K., Koval O. M., Noble P., Broadhurst K., Allamargot C., Wu M., et al. (2018). CaMKII (Ca(2+)/calmodulin-dependent kinase II) in mitochondria of smooth muscle cells controls mitochondrial mobility, migration, and neointima formation. Arterioscler. Thromb. Vasc. Biol. 38 (6), 1333–1345. 10.1161/ATVBAHA.118.310951 PubMed DOI PMC

Nguyen T. T., Oh S. S., Weaver D., Lewandowska A., Maxfield D., Schuler M. H., et al. (2014). Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc. Natl. Acad. Sci. U. S. A. 111 (35), E3631–E3640. 10.1073/pnas.1402449111 PubMed DOI PMC

Nicolas-Avila J. A., Lechuga-Vieco A. V., Esteban-Martinez L., Sanchez-Diaz M., Diaz-Garcia E., Santiago D. J., et al. (2020). A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 183 (1), 94–109. e123. 10.1016/j.cell.2020.08.031 PubMed DOI

Niescier R. F., Chang K. T., Min K. T. (2013). Miro, MCU, and calcium: Bridging our understanding of mitochondrial movement in axons. Front. Cell. Neurosci. 7, 148. 10.3389/fncel.2013.00148 PubMed DOI PMC

Niescier R. F., Hong K., Park D., Min K. T. (2018). MCU interacts with Miro1 to modulate mitochondrial functions in neurons. J. Neurosci. 38 (20), 4666–4677. 10.1523/JNEUROSCI.0504-18.2018 PubMed DOI PMC

Oeding S. J., Majstrowicz K., Hu X. P., Schwarz V., Freitag A., Honnert U., et al. (2018). Identification of Miro1 and Miro2 as mitochondrial receptors for myosin XIX. J. Cell. Sci. 131 (17), jcs219469. 10.1242/jcs.219469 PubMed DOI

Okumoto K., Ono T., Toyama R., Shimomura A., Nagata A., Fujiki Y., et al. (2018). New splicing variants of mitochondrial Rho GTPase-1 (Miro1) transport peroxisomes. J. Cell. Biol. 217 (2), 619–633. 10.1083/jcb.201708122 PubMed DOI PMC

Olzmann J. A., Li L., Chudaev M. V., Chen J., Perez F. A., Palmiter R. D., et al. (2007). Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J. Cell. Biol. 178 (6), 1025–1038. 10.1083/jcb.200611128 PubMed DOI PMC

Osswald M., Jung E., Sahm F., Solecki G., Venkataramani V., Blaes J., et al. (2015). Brain tumour cells interconnect to a functional and resistant network. Nature 528 (7580), 93–98. 10.1038/nature16071 PubMed DOI

Paliwal S., Chaudhuri R., Agrawal A., Mohanty S. (2018). Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J. Biomed. Sci. 25 (1), 31. 10.1186/s12929-018-0429-1 PubMed DOI PMC

Panchal K., Tiwari A. K. (2021). Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion 56, 118–135. 10.1016/j.mito.2020.10.005 PubMed DOI

Park G. H., Park J. H., Chung K. C. (2021). Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep. 54 (12), 592–600. 10.5483/bmbrep.2021.54.12.107 PubMed DOI PMC

Park S., Foote P. K., Krist D. T., Rice S. E., Statsyuk A. V. (2017). UbMES and UbFluor: Novel probes for ring-between-ring (RBR) E3 ubiquitin ligase PARKIN. J. Biol. Chem. 292 (40), 16539–16553. 10.1074/jbc.M116.773200 PubMed DOI PMC

Pasquier J., Guerrouahen B. S., Al Thawadi H., Ghiabi P., Maleki M., Abu-Kaoud N., et al. (2013). Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med. 11, 94. 10.1186/1479-5876-11-94 PubMed DOI PMC

Patergnani S., Danese A., Bouhamida E., Aguiari G., Previati M., Pinton P., et al. (2020). Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int. J. Mol. Sci. 21 (21), E8323. 10.3390/ijms21218323 PubMed DOI PMC

Pavlova N. N., Zhu J., Thompson C. B. (2022). The hallmarks of cancer metabolism: Still emerging. Cell. Metab. 34 (3), 355–377. 10.1016/j.cmet.2022.01.007 PubMed DOI PMC

Peters D. T., Kay L., Eswaran J., Lakey J. H., Soundararajan M. (2018). Human Miro proteins act as NTP hydrolases through a novel, non-canonical catalytic mechanism. Int. J. Mol. Sci. 19 (12), 3839. 10.3390/ijms19123839 PubMed DOI PMC

Pickles S., Vigie P., Youle R. J. (2018). Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28 (4), R170–R185. 10.1016/j.cub.2018.01.004 PubMed DOI PMC

Pinto G., Brou C., Zurzolo C. (2020). Tunneling nanotubes: The fuel of tumor progression? Trends Cancer 6 (10), 874–888. 10.1016/j.trecan.2020.04.012 PubMed DOI

Pinto G., Saenz-de-Santa-Maria I., Chastagner P., Perthame E., Delmas C., Toulas C., et al. (2021). Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem. J. 478 (1), 21–39. 10.1042/BCJ20200710 PubMed DOI PMC

Plotnikov E. Y., Khryapenkova T. G., Galkina S. I., Sukhikh G. T., Zorov D. B. (2010). Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Exp. Cell. Res. 316 (15), 2447–2455. 10.1016/j.yexcr.2010.06.009 PubMed DOI

Polak R., de Rooij B., Pieters R., den Boer M. L. (2015). B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood 126 (21), 2404–2414. 10.1182/blood-2015-03-634238 PubMed DOI

Porporato P. E., Filigheddu N., Pedro J. M. B., Kroemer G., Galluzzi L. (2018). Mitochondrial metabolism and cancer. Cell. Res. 28 (3), 265–280. 10.1038/cr.2017.155 PubMed DOI PMC

Qin Y., Jiang X., Yang Q., Zhao J., Zhou Q., Zhou Y., et al. (2021). The functions, methods, and mobility of mitochondrial transfer between cells. Front. Oncol. 11, 672781. 10.3389/fonc.2021.672781 PubMed DOI PMC

Qu S., Hao X., Song W., Niu K., Yang X., Zhang X., et al. (2019). Circular RNA circRHOT1 is upregulated and promotes cell proliferation and invasion in pancreatic cancer. Epigenomics 11 (1), 53–63. 10.2217/epi-2018-0051 PubMed DOI

Quintero O. A., DiVito M. M., Adikes R. C., Kortan M. B., Case L. B., Lier A. J., et al. (2009). Human Myo19 is a novel myosin that associates with mitochondria. Curr. Biol. 19 (23), 2008–2013. 10.1016/j.cub.2009.10.026 PubMed DOI PMC

Raghavan A., Rao P., Neuzil J., Pountney D. L., Nath S. (2021). Oxidative stress and Rho GTPases in the biogenesis of tunnelling nanotubes: Implications in disease and therapy. Cell. Mol. Life Sci. 79 (1), 36. 10.1007/s00018-021-04040-0 PubMed DOI PMC

Ranzinger J., Rustom A., Schwenger V. (2014). Membrane nanotubes between peritoneal mesothelial cells: Functional connectivity and crucial participation during inflammatory reactions. Front. Physiol. 5, 412. 10.3389/fphys.2014.00412 PubMed DOI PMC

Reis K., Fransson A., Aspenstrom P. (2009). The Miro GTPases: At the heart of the mitochondrial transport machinery. FEBS Lett. 583 (9), 1391–1398. 10.1016/j.febslet.2009.04.015 PubMed DOI

Resnik N., Prezelj T., De Luca G. M. R., Manders E., Polishchuk R., Veranic P., et al. (2018). Helical organization of microtubules occurs in a minority of tunneling membrane nanotubes in normal and cancer urothelial cells. Sci. Rep. 8 (1), 17133. 10.1038/s41598-018-35370-y PubMed DOI PMC

Richard T. J. C., Herzog L. K., Vornberger J., Rahmanto A. S., Sangfelt O., Salomons F. A., et al. (2020). K63-linked ubiquitylation induces global sequestration of mitochondria. Sci. Rep. 10 (1), 22334. 10.1038/s41598-020-78845-7 PubMed DOI PMC

Rieusset J. (2017). Role of endoplasmic reticulum-mitochondria communication in Type 2 diabetes. Adv. Exp. Med. Biol. 997, 171–186. 10.1007/978-981-10-4567-7_13 PubMed DOI

Rivadeneira D. B., Caino M. C., Seo J. H., Angelin A., Wallace D. C., Languino L. R., et al. (2015). Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci. Signal. 8 (389), ra80. 10.1126/scisignal.aab1624 PubMed DOI PMC

Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., et al. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280 (5370), 1763–1766. 10.1126/science.280.5370.1763 PubMed DOI

Roehlecke C., Schmidt M. H. H. (2020). Tunneling nanotubes and tumor microtubes in cancer. Cancers (Basel) 12 (4), E857. 10.3390/cancers12040857 PubMed DOI PMC

Romero-Garcia S., Prado-Garcia H. (2019). Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int. J. Oncol. 54 (4), 1155–1167. 10.3892/ijo.2019.4696 PubMed DOI

Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H. H. (2004). Nanotubular highways for intercellular organelle transport. Science 303 (5660), 1007–1010. 10.1126/science.1093133 PubMed DOI

Rustom A. (2016). The missing link: Does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? Open Biol. 6 (6), 160057. 10.1098/rsob.160057 PubMed DOI PMC

Saeed M. (2018). Genomic convergence of locus-based GWAS meta-analysis identifies AXIN1 as a novel Parkinson's gene. Immunogenetics 70 (9), 563–570. 10.1007/s00251-018-1068-0 PubMed DOI

Safiulina D., Kuum M., Choubey V., Gogichaishvili N., Liiv J., Hickey M. A., et al. (2019a). Miro proteins prime mitochondria for Parkin translocation and mitophagy. EMBO J. 38 (2), e99384. 10.15252/embj.201899384 PubMed DOI PMC

Safiulina D., Kuum M., Choubey V., Hickey M. A., Kaasik A. (2019b). Mitochondrial transport proteins RHOT1 and RHOT2 serve as docking sites for PRKN-mediated mitophagy. Autophagy 15 (5), 930–931. 10.1080/15548627.2019.1586260 PubMed DOI PMC

Saha T., Dash C., Jayabalan R., Khiste S., Kulkarni A., Kurmi K., et al. (2022). Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat. Nanotechnol. 17 (1), 98–106. 10.1038/s41565-021-01000-4 PubMed DOI PMC

Sahinbegovic H., Jelinek T., Hrdinka M., Bago J. R., Turi M., Sevcikova T., et al. (2020). Intercellular mitochondrial transfer in the tumor microenvironment. Cancers (Basel) 12 (7), E1787. 10.3390/cancers12071787 PubMed DOI PMC

Sahu P., Jena S. R., Samanta L. (2018). Tunneling nanotubes: A versatile target for cancer therapy. Curr. Cancer Drug Targets 18 (6), 514–521. 10.2174/1568009618666171129222637 PubMed DOI

Sala-Vila A., Navarro-Lerida I., Sanchez-Alvarez M., Bosch M., Calvo C., Lopez J. A., et al. (2016). Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci. Rep. 6, 27351. 10.1038/srep27351 PubMed DOI PMC

Salaud C., Alvarez-Arenas A., Geraldo F., Belmonte-Beitia J., Calvo G. F., Gratas C., et al. (2020). Mitochondria transfer from tumor-activated stromal cells (TASC) to primary Glioblastoma cells. Biochem. Biophys. Res. Commun. 533 (1), 139–147. 10.1016/j.bbrc.2020.08.101 PubMed DOI

Saotome M., Safiulina D., Szabadkai G., Das S., Fransson A., Aspenstrom P., et al. (2008). Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl. Acad. Sci. U. S. A. 105 (52), 20728–20733. 10.1073/pnas.0808953105 PubMed DOI PMC

Sáenz-de-Santa-María I., Bernardo-Castiñeira C., Enciso E., García-Moreno I., Chiara J. L., Suarez C., et al. (2017). Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget. 8 (13), 20939–20960. 10.18632/oncotarget.15467 PubMed DOI PMC

Sartori-Rupp A., Cordero Cervantes D., Pepe A., Gousset K., Delage E., Corroyer-Dulmont S., et al. (2019). Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat. Commun. 10 (1), 342. 10.1038/s41467-018-08178-7 PubMed DOI PMC

Schiller C., Diakopoulos K. N., Rohwedder I., Kremmer E., von Toerne C., Ueffing M., et al. (2013). LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. J. Cell. Sci. 126 (Pt 3), 767–777. 10.1242/jcs.114033 PubMed DOI

Schuler M. H., Lewandowska A., Caprio G. D., Skillern W., Upadhyayula S., Kirchhausen T., et al. (2017). Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Mol. Biol. Cell. 28 (16), 2159–2169. 10.1091/mbc.E16-10-0741 PubMed DOI PMC

Schwarz T. L. (2013). Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol. 5 (6), a011304. 10.1101/cshperspect.a011304 PubMed DOI PMC

Senft D., Ronai Z. A. (2016). Regulators of mitochondrial dynamics in cancer. Curr. Opin. Cell. Biol. 39, 43–52. 10.1016/j.ceb.2016.02.001 PubMed DOI PMC

Seo J. H., Agarwal E., Bryant K. G., Caino M. C., Kim E. T., Kossenkov A. V., et al. (2018). Syntaphilin ubiquitination regulates mitochondrial dynamics and tumor cell movements. Cancer Res. 78 (15), 4215–4228. 10.1158/0008-5472.CAN-18-0595 PubMed DOI PMC

Shan Z., Fa W. H., Tian C. R., Yuan C. S., Jie N. (2022). Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment. Aging (Albany NY) 14 (6), 2902–2919. 10.18632/aging.203969 PubMed DOI PMC

Shanmughapriya S., Langford D., Natarajaseenivasan K. (2020). Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res. Rev. 62, 101128. 10.1016/j.arr.2020.101128 PubMed DOI PMC

Shlevkov E., Kramer T., Schapansky J., LaVoie M. J., Schwarz T. L. (2016). Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proc. Natl. Acad. Sci. U. S. A. 113 (41), E6097–E6106. 10.1073/pnas.1612283113 PubMed DOI PMC

Simmen T., Aslan J. E., Blagoveshchenskaya A. D., Thomas L., Wan L., Xiang Y., et al. (2005). PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 24 (4), 717–729. 10.1038/sj.emboj.7600559 PubMed DOI PMC

Sinha P., Islam M. N., Bhattacharya S., Bhattacharya J. (2016). Intercellular mitochondrial transfer: Bioenergetic crosstalk between cells. Curr. Opin. Genet. Dev. 38, 97–101. 10.1016/j.gde.2016.05.002 PubMed DOI PMC

Smith K. P., Focia P. J., Chakravarthy S., Landahl E. C., Klosowiak J. L., Rice S. E., et al. (2020). Insight into human Miro1/2 domain organization based on the structure of its N-terminal GTPase. J. Struct. Biol. 212 (3), 107656. 10.1016/j.jsb.2020.107656 PubMed DOI PMC

Soubannier V., McLelland G. L., Zunino R., Braschi E., Rippstein P., Fon E. A., et al. (2012). A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22 (2), 135–141. 10.1016/j.cub.2011.11.057 PubMed DOI

Stephan T., Bruser C., Deckers M., Steyer A. M., Balzarotti F., Barbot M., et al. (2020). MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 39 (14), e104105. 10.15252/embj.2019104105 PubMed DOI PMC

Stephen T. L., Higgs N. F., Sheehan D. F., Al Awabdh S., Lopez-Domenech G., Arancibia-Carcamo I. L., et al. (2015). Miro1 regulates activity-driven positioning of mitochondria within astrocytic processes apposed to synapses to regulate intracellular calcium signaling. J. Neurosci. 35 (48), 15996–16011. 10.1523/JNEUROSCI.2068-15.2015 PubMed DOI PMC

Sugiura A., Mattie S., Prudent J., McBride H. M. (2017). Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542 (7640), 251–254. 10.1038/nature21375 PubMed DOI

Sun Y., Vashisht A. A., Tchieu J., Wohlschlegel J. A., Dreier L. (2012). Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J. Biol. Chem. 287 (48), 40652–40660. 10.1074/jbc.M112.419721 PubMed DOI PMC

Tan A. S., Baty J. W., Dong L. F., Bezawork-Geleta A., Endaya B., Goodwin J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell. Metab. 21 (1), 81–94. 10.1016/j.cmet.2014.12.003 PubMed DOI

Tang Z., Li C., Kang B., Gao G., Li C., Zhang Z., et al. (2017). Gepia: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45 (W1), W98–W102. 10.1093/nar/gkx247 PubMed DOI PMC

Tasca A., Astleford K., Lederman A., Jensen E. D., Lee B. S., Gopalakrishnan R., et al. (2017). Regulation of osteoclast differentiation by myosin X. Sci. Rep. 7 (1), 7603. 10.1038/s41598-017-07855-9 PubMed DOI PMC

Thayanithy V., Dickson E. L., Steer C., Subramanian S., Lou E. (2014). Tumor-stromal cross talk: Direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Transl. Res. 164 (5), 359–365. 10.1016/j.trsl.2014.05.011 PubMed DOI PMC

Tiwari V., Koganti R., Russell G., Sharma A., Shukla D. (2021). Role of tunneling nanotubes in viral infection, neurodegenerative disease, and cancer. Front. Immunol. 12, 680891. 10.3389/fimmu.2021.680891 PubMed DOI PMC

Torralba D., Baixauli F., Sanchez-Madrid F. (2016). Mitochondria know No boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front. Cell. Dev. Biol. 4, 107. 10.3389/fcell.2016.00107 PubMed DOI PMC

Tsai P. I., Papakyrikos A. M., Hsieh C. H., Wang X. (2017). Drosophila MIC60/mitofilin conducts dual roles in mitochondrial motility and crista structure. Mol. Biol. Cell. 28 (24), 3471–3479. 10.1091/mbc.E17-03-0177 PubMed DOI PMC

Tseng N., Lambie S. C., Huynh C. Q., Sanford B., Patel M., Herson P. S., et al. (2021). Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: The role of Miro1. J. Cereb. Blood Flow. Metab. 41 (4), 761–770. 10.1177/0271678X20928147 PubMed DOI PMC

Tubbs E., Theurey P., Vial G., Bendridi N., Bravard A., Chauvin M. A., et al. (2014). Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63 (10), 3279–3294. 10.2337/db13-1751 PubMed DOI

UniProt Consortium (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47 (D1), D506–D515. 10.1093/nar/gky1049 PubMed DOI PMC

Valenti D., Vacca R. A., Moro L., Atlante A. (2021). Mitochondria can cross cell boundaries: An overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer. Int. J. Mol. Sci. 22 (15), 8312. 10.3390/ijms22158312 PubMed DOI PMC

Vallabhaneni K. C., Haller H., Dumler I. (2012). Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 21 (17), 3104–3113. 10.1089/scd.2011.0691 PubMed DOI PMC

Vance J. E. (1990). Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265 (13), 7248–7256. 10.1016/S0021-9258(19)39106-9 PubMed DOI

Vander Heiden M. G., Cantley L. C., Thompson C. B. (2009). Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 324 (5930), 1029–1033. 10.1126/science.1160809 PubMed DOI PMC

Vaupel P., Schmidberger H., Mayer A. (2019). The warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 95 (7), 912–919. 10.1080/09553002.2019.1589653 PubMed DOI

Vignais M. L., Caicedo A., Brondello J. M., Jorgensen C. (2017). Cell connections by tunneling nanotubes: Effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int. 2017, 6917941. 10.1155/2017/6917941 PubMed DOI PMC

Vona R., Mileo A. M., Matarrese P. (2021). Microtubule-based mitochondrial dynamics as a valuable therapeutic target in cancer. Cancers (Basel) 13 (22), 5812. 10.3390/cancers13225812 PubMed DOI PMC

Wan B., LaNoue K. F., Cheung J. Y., Scaduto R. C., Jr. (1989). Regulation of citric acid cycle by calcium. J. Biol. Chem. 264 (23), 13430–13439. 10.1016/s0021-9258(18)80015-1 PubMed DOI

Wang F., Chen X., Cheng H., Song L., Liu J., Caplan S., et al. (2021). MICAL2PV suppresses the formation of tunneling nanotubes and modulates mitochondrial trafficking. EMBO Rep. 22 (7), e52006. 10.15252/embr.202052006 PubMed DOI PMC

Wang J., Liu X., Qiu Y., Shi Y., Cai J., Wang B., et al. (2018). Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J. Hematol. Oncol. 11 (1), 11. 10.1186/s13045-018-0554-z PubMed DOI PMC

Wang L., Long H., Zheng Q., Bo X., Xiao X., Li B., et al. (2019). Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol. Cancer 18 (1), 119. 10.1186/s12943-019-1046-7 PubMed DOI PMC

Wang X., Gerdes H. H. (2015). Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell. Death Differ. 22 (7), 1181–1191. 10.1038/cdd.2014.211 PubMed DOI PMC

Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y. L., Selkoe D., et al. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 147 (4), 893–906. 10.1016/j.cell.2011.10.018 PubMed DOI PMC

Wang Y., Cui J., Sun X., Zhang Y. (2011). Tunneling-nanotube development in astrocytes depends on p53 activation. Cell. Death Differ. 18 (4), 732–742. 10.1038/cdd.2010.147 PubMed DOI PMC

Warburg O. (1956). On the origin of cancer cells. Science 123 (3191), 309–314. 10.1126/science.123.3191.309 PubMed DOI

Wennerberg K., Der C. J. (2004). Rho-family GTPases: it's not only rac and Rho (and I like it). J. Cell. Sci. 117 (Pt 8), 1301–1312. 10.1242/jcs.01118 PubMed DOI

Weston L. J., Stackhouse T. L., Spinelli K. J., Boutros S. W., Rose E. P., Osterberg V. R., et al. (2021). Genetic deletion of Polo-like kinase 2 reduces alpha-synuclein serine-129 phosphorylation in presynaptic terminals but not Lewy bodies. J. Biol. Chem. 296, 100273. 10.1016/j.jbc.2021.100273 PubMed DOI PMC

White R. R., Lin C., Leaves I., Castro I. G., Metz J., Bateman B. C., et al. (2020). Miro2 tethers the ER to mitochondria to promote mitochondrial fusion in tobacco leaf epidermal cells. Commun. Biol. 3 (1), 161. 10.1038/s42003-020-0872-x PubMed DOI PMC

Wittig D., Wang X., Walter C., Gerdes H. H., Funk R. H., Roehlecke C., et al. (2012). Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes. PLoS One 7 (3), e33195. 10.1371/journal.pone.0033195 PubMed DOI PMC

Yamaoka S., Nakajima M., Fujimoto M., Tsutsumi N. (2011). MIRO1 influences the morphology and intracellular distribution of mitochondria during embryonic cell division in Arabidopsis. Plant Cell. Rep. 30 (2), 239–244. 10.1007/s00299-010-0926-5 PubMed DOI

Yang H., Borg T. K., Ma Z., Xu M., Wetzel G., Saraf L. V., et al. (2016). Biochip-based study of unidirectional mitochondrial transfer from stem cells to myocytes via tunneling nanotubes. Biofabrication 8 (1), 015012. 10.1088/1758-5090/8/1/015012 PubMed DOI

Yang M., Li C., Yang S., Xiao Y., Xiong X., Chen W., et al. (2020). Mitochondria-associated ER membranes - the origin site of autophagy. Front. Cell. Dev. Biol. 8, 595. 10.3389/fcell.2020.00595 PubMed DOI PMC

Yang Y., Ye G., Zhang Y. L., He H. W., Yu B. Q., Hong Y. M., et al. (2020). Transfer of mitochondria from mesenchymal stem cells derived from induced pluripotent stem cells attenuates hypoxia-ischemia-induced mitochondrial dysfunction in PC12 cells. Neural Regen. Res. 15 (3), 464–472. 10.4103/1673-5374.266058 PubMed DOI PMC

Yi M., Weaver D., Hajnoczky G. (2004). Control of mitochondrial motility and distribution by the calcium signal: A homeostatic circuit. J. Cell. Biol. 167 (4), 661–672. 10.1083/jcb.200406038 PubMed DOI PMC

Zampieri L. X., Silva-Almeida C., Rondeau J. D., Sonveaux P. (2021). Mitochondrial transfer in cancer: A comprehensive review. Int. J. Mol. Sci. 22 (6), 3245. 10.3390/ijms22063245 PubMed DOI PMC

Zhang L., Dai L., Li D. (2021). Mitophagy in neurological disorders. J. Neuroinflammation 18 (1), 297. 10.1186/s12974-021-02334-5 PubMed DOI PMC

Zhang L., Zhang Y. (2015). Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells. Neurosci. Bull. 31 (3), 371–378. 10.1007/s12264-014-1522-4 PubMed DOI PMC

Zhang Y., Yu Z., Jiang D., Liang X., Liao S., Zhang Z., et al. (2016). iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-alpha yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell. Rep. 7 (4), 749–763. 10.1016/j.stemcr.2016.08.009 PubMed DOI PMC

Zhao J., Zhang J., Yu M., Xie Y., Huang Y., Wolff D. W., et al. (2013). Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32 (40), 4814–4824. 10.1038/onc.2012.494 PubMed DOI PMC

Zhao Y., Song E., Wang W., Hsieh C. H., Wang X., Feng W., et al. (2021). Metaxins are core components of mitochondrial transport adaptor complexes. Nat. Commun. 12 (1), 83. 10.1038/s41467-020-20346-2 PubMed DOI PMC

Zinsmaier K. E. (2021). Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 12 (5-6), 372–398. 10.1080/21541248.2020.1843957 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace