The adenosinergic signaling in the pathogenesis and treatment of multiple sclerosis

. 2022 ; 13 () : 946698. [epub] 20220728

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35967385

Multiple sclerosis (MS) is a highly disabling, progressive neurodegenerative disease with no curative treatment available. Although significant progress has been made in understanding how MS develops, there remain aspects of disease pathogenesis that are yet to be fully elucidated. In this regard, studies have shown that dysfunctional adenosinergic signaling plays a pivotal role, as patients with MS have altered levels adenosine (ADO), adenosine receptors and proteins involved in the generation and termination of ADO signaling, such as CD39 and adenosine deaminase (ADA). We have therefore performed a literature review regarding the involvement of the adenosinergic system in the development of MS and propose mechanisms by which the modulation of this system can support drug development and repurposing.

Zobrazit více v PubMed

Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol (2015) 15:545–58. doi: 10.1038/nri3871 PubMed DOI

Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov (2019) 18:905–22. doi: 10.1038/s41573-019-0035-2 PubMed DOI

Antonioli L, Blandizzi C, Pacher P, Haskó G. Immunity, inflammation and cancer: A leading role for adenosine. Nat Rev Cancer (2013) 13:842–57. doi: 10.1038/nrc3613 PubMed DOI

Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med (2012) v. 367:2322–2333. doi: 10.1056/nejmra1205750 PubMed DOI PMC

Haskó G, Linden J, Cronstein B, Pacher P. Adenosine receptors: Therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discovery (2008) v. 7:759–70. doi: 10.1038/nrd2638 PubMed DOI PMC

Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem (2016) v. 139:1019–55. doi: 10.1111/jnc.13724 PubMed DOI

Safarzadeh E, Jadidi-Niaragh F, Motallebnezhad M, Yousefi M. The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflammation Res (2016) v. 65:511–20. doi: 10.1007/s00011-016-0936-z PubMed DOI

Mayne M, Shepel PN, Jiang Y, Geiger JD, Power C. Dysregulation of adenosine A1 receptor-mediated cytokine expression in peripheral blood mononuclear cells from multiple sclerosis patients. Ann Neurol (1999) 45:633–9. doi: 10.1002/1531-8249(199905)45:5<633::AID-ANA12>3.0.CO;2-X PubMed DOI

Carman AJ, Mills JH, Krenz A, Kim DG, Bynoe MS. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci (2011) 31:13272–80. doi: 10.1523/JNEUROSCI.3337-11.2011 PubMed DOI PMC

Tsutsui S, Vergote D, Shariat N, Warren K, Ferguson SSG, Power C. Glucocorticoids regulate innate immunity in a model of multiple sclerosis: reciprocal interactions between the A1 adenosine receptor and β-arrestin-1 in monocytoid cells. FASEB J (2008) 22:786–96. doi: 10.1096/fj.07-9002com PubMed DOI

Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, et al. . Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol (2001) 49:650–8. doi: 10.1002/ana.1007 PubMed DOI

Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, et al. . A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci (2004) 24:1521–9. doi: 10.1523/JNEUROSCI.4271-03.2004 PubMed DOI PMC

Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: Mechanisms and immunotherapy. Neuron (2018) 97:742–68. doi: 10.1016/j.neuron.2018.01.021 PubMed DOI

Cramer SP, Simonsen HJ, Frederiksen J, Rostrup E, Larsson HBW. Abnormal blood-brain barrier permeability in multiple sclerosis investigated by MRI. Mult Scler (2013) 4:182–9. PubMed PMC

Steinman L. Multiple sclerosis: Two-stage disease. Nat Immunol (2001) 2:762–4. doi: 10.1038/ni0901-762 PubMed DOI

Coppi E, Cellai L, Maraula G, Dettori I, Melani A, Pugliese AM, et al. . Role of adenosine in oligodendrocyte precursor maturation. Front Cell Neurosci (2015) 9:155. doi: 10.3389/fncel.2015.00155 PubMed DOI PMC

Cherchi F, Pugliese AM, Coppi E. Oligodendrocyte precursor cell maturation: Role of adenosine receptors. Neural Regener Res (2021) 16:1686–92. doi: 10.4103/1673-5374.306058 PubMed DOI PMC

Asghari AA, Azarnia M, Mirnajafi-Zadeh J, Javan M. Adenosine A1 receptor agonist, N6-cyclohexyladenosine, protects myelin and induces remyelination in an experimental model of rat optic chiasm demyelination; electrophysiological and histopathological studies. J Neurol Sci (2013) 325:22–8. doi: 10.1016/j.jns.2012.11.008 PubMed DOI

Werner P, Pitt D, Raine CS. Multiple sclerosis: Altered glutamate homeostasis in lesions correlates with oligodendrocyre and axonal damage. Ann Neurol (2001) 50:169–80. doi: 10.1002/ana.1077 PubMed DOI

Bittner S, Bobak N, Herrmann AM, Göbel K, Meuth P, Höhn KG, et al. . Upregulation of K2P5.1 potassium channels in multiple sclerosis. Ann Neurol (2010) 68:58–69. doi: 10.1002/ana.22010 PubMed DOI

Ruck T, Bock S, Pfeuffer S, Schroeter CB, Cengiz D, Marciniak P, et al. . K2P18.1 translates T cell receptor signals into thymic regulatory T cell development. Cell Res (2022) 32:72–88. doi: 10.1038/s41422-021-00580-z PubMed DOI PMC

Beraud E, Viola A, Regaya I, Confort-Gouny S, Siaud P, Ibarrola D, et al. . Block of neural Kv1.1 potassium channels for neuroinflammatory disease therapy. Ann Neurol (2006) 60:586–96. doi: 10.1002/ana.21007 PubMed DOI

Rotermund N, Winandy S, Fischer T, Schulz K, Fregin T, Alstedt N, et al. . Adenosine a 1 receptor activates background potassium channels and modulates information processing in olfactory bulb mitral cells. J Physiol (2018) 596:717–33. doi: 10.1113/JP275503 PubMed DOI PMC

Wang T, Xi NN, Chen Y, Shang XF, Hu Q, Chen JF, et al. . Chronic caffeine treatment protects against experimental autoimmune encephalomyelitis in mice: Therapeutic window and receptor subtype mechanism. Neuropharmacology (2014) 86:203–11. doi: 10.1016/j.neuropharm.2014.06.029 PubMed DOI

Ingwersen J, Wingerath B, Graf J, Lepka K, Hofrichter M, Schröter F, et al. . Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation. J Neuroinflamm (2016) 13:48. doi: 10.1186/s12974-016-0512-z PubMed DOI PMC

Yao SQ, Li ZZ, Huang QY, Li F, Wang ZW, Augusto E, et al. . Genetic inactivation of the adenosine A2A receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J Neurochem (2012) 123:100–12. doi: 10.1111/j.1471-4159.2012.07807.x PubMed DOI

Vincenzi F, Corciulo C, Targa M, Merighi S, Gessi S, Casetta I, et al. . Multiple sclerosis lymphocytes upregulate A2A adenosine receptors that are antiinflammatory when stimulated. Eur J Immunol (2013) 43:2206–16. doi: 10.1002/eji.201343314 PubMed DOI

Liu Y, Alahiri M, Ulloa B, Xie B, Sadiq SA. Adenosine A2A receptor agonist ameliorates EAE and correlates with Th1 cytokine-induced blood brain barrier dysfunction via suppression of MLCK signaling pathway. Immun Inflammation Dis (2018) 6:72–80. doi: 10.1002/iid3.187 PubMed DOI PMC

Loram LC, Strand KA, Taylor FR, Sloane E, Van Dam AM, Rieger J, et al. . Adenosine 2A receptor agonism: A single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats. Brain Behav Immun (2015) 46:50–4. doi: 10.1016/j.bbi.2015.01.014 PubMed DOI PMC

Chen Y, Zhang ZX, Zheng LP, Wang L, Liu YF, Yin WY, et al. . The adenosine A2A receptor antagonist SCH58261 reduces macrophage/microglia activation and protects against experimental autoimmune encephalomyelitis in mice. Neurochem Int (2019) 129:104490. doi: 10.1016/j.neuint.2019.104490 PubMed DOI

Mills JH, Alabanza LM, Mahamed DA, Bynoe MS. Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis. J Neuroinflamm (2012) 9:193. doi: 10.1186/1742-2094-9-193 PubMed DOI PMC

Zheng W, Feng Y, Zeng Z, Ye M, Wang M, Liu X, et al. . Choroid plexus-selective inactivation of adenosine A2A receptors protects against T cell infiltration and experimental autoimmune encephalomyelitis. J Neuroinflamm (2022) 19:52. doi: 10.1186/s12974-022-02415-z PubMed DOI PMC

Wei W, Du C, Lv J, Zhao G, Li Z, Wu Z, et al. . Blocking a 2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol (2013) 190:138–46. doi: 10.4049/jimmunol.1103721 PubMed DOI PMC

Lee JY, Jhun BS, Oh YT, Lee JH, Choe W, Baik HH, et al. . Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-α production through inhibition of PI 3-kinase/Akt and NF-κB activation in murine BV2 microglial cells. Neurosci Lett (2006) 396:1–6. doi: 10.1016/j.neulet.2005.11.004 PubMed DOI

Chen GQ, Chen YY, Wang XS, Wu SZ, Yang HM, Xu HQ, et al. . Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in wistar rats. Brain Res (2010) 1309:116–25. doi: 10.1016/j.brainres.2009.10.054 PubMed DOI

Cellai L, Carvalho K, Faivre E, Deleau A, Vieau D, Buée L, et al. . The adenosinergic signaling: A complex but promising therapeutic target for alzheimer’s disease. Front Neurosci (2018) 12:520. doi: 10.3389/fnins.2018.00520 PubMed DOI PMC

Hedström AK, Mowry EM, Gianfrancesco MA, Shao X, Schaefer CA, Shen L, et al. . High consumption of coffee is associated with decreased multiple sclerosis risk; results from two independent studies. J Neurol Neurosurg Psychiatry (2016) 87:454–60. doi: 10.1136/jnnp-2015-312176 PubMed DOI PMC

D’hooghe MB, Haentjens P, Nagels G, De Keyser J. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. Eur J Neurol (2012) 19:616–24. doi: 10.1111/j.1468-1331.2011.03596.x PubMed DOI

Massa J, O’Reilly EJ, Munger KL, Ascherio A. Caffeine and alcohol intakes have no association with risk of multiple sclerosis. Mult Scler J (2013) 19:53–8. doi: 10.1177/1352458512448108 PubMed DOI PMC

Ponsonby AL, Lucas RM, Dear K, van der Mei I, Taylor B, Chapman C, et al. . The physical anthropometry, lifestyle habits and blood pressure of people presenting with a first clinical demyelinating event compared to controls: The ausimmune study. Mult Scler J (2013) 19:1717–25. doi: 10.1177/1352458513483887 PubMed DOI

Pekmezovic T, Drulovic J, Milenkovic M, Jarebinski M, Stojsavljevic N, Mesaros S, et al. . Lifestyle factors and multiple sclerosis: A case-control study in Belgrade. Neuroepidemiology (2006) 27:212–6. doi: 10.1159/000096853 PubMed DOI

Herden L, Weissert R. The effect of coffee and caffeine consumption on patients with multiple sclerosis-related fatigue. Nutrients (2020) 12:2262. doi: 10.3390/nu12082262 PubMed DOI PMC

Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’Farrelly C, et al. . CD39 + Foxp3 + regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol (2009) 183:7602–10. doi: 10.4049/jimmunol.0901881 PubMed DOI

Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR. T Regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol (2006) 177:6780–6. doi: 10.4049/jimmunol.177.10.6780 PubMed DOI

Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. . Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med (2007) 204:1257–65. doi: 10.1084/jem.20062512 PubMed DOI PMC

Muls NGV, Dang HA, Sindic CJM, Van Pesch V. Regulation of treg-associated CD39 in multiple sclerosis and effects of corticotherapy during relapse. Mult Scler J (2015) 21:1533–45. doi: 10.1177/1352458514567215 PubMed DOI

Álvarez-Sánchez N, Cruz-Chamorro I, Díaz-Sánchez M, Lardone PJ, Guerrero JM, Carrillo-Vico A. Peripheral CD39-expressing T regulatory cells are increased and associated with relapsing-remitting multiple sclerosis in relapsing patients. Sci Rep (2019) 9:2302. doi: 10.1038/s41598-019-38897-w PubMed DOI PMC

Spanevello RM, Mazzanti CM, Schmatz R, Thomé G, Bagatini M, Correa M, et al. . The activity and expression of NTPDase is altered in lymphocytes of multiple sclerosis patients. Clin Chim Acta (2010) 411:210–4. doi: 10.1016/j.cca.2009.11.005 PubMed DOI

Muls N, Dang HA, Sindic CJM, Van Pesch V. Fingolimod increases CD39-expressing regulatory T cells in multiple sclerosis patients. PloS One (2014) 9:e113025. doi: 10.1371/journal.pone.0113025 PubMed DOI PMC

Remez L, Ganelin-Cohen E, Safina D, Hellmann MA, Lotan I, Bosak N, et al. . Alemtuzumab mediates the CD39+ T-regulatory cell response via CD23+ macrophages. Immunol Cell Biol (2021) 99:521–31. doi: 10.1111/imcb.12431 PubMed DOI

Ochoa-Repáraz J, Colpitts SL, Kircher C, Kasper EJ, Telesford KM, Begum-Haque S, et al. . Induction of gut regulatory CD39+ T cells by teriflunomide protects against EAE. Neurol Neuroimmunol Neuroinflamm (2016) 3:e291. doi: 10.1212/NXI.0000000000000291 PubMed DOI PMC

Peelen E, Damoiseaux J, Smolders J, Knippenberg S, Menheere P, Tervaert JWC, et al. . Th17 expansion in MS patients is counterbalanced by an expanded CD39 + regulatory T cell population during remission but not during relapse. J Neuroimmunol (2011) 240-241:97–103. doi: 10.1016/j.jneuroim.2011.09.013 PubMed DOI

Sacramento PM, Monteiro C, Dias ASO, Kasahara TM, Ferreira TB, Hygino J, et al. . Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4 + T-cell subsets in multiple sclerosis patients. Eur J Immunol (2018) 48:1376–88. doi: 10.1002/eji.201847525 PubMed DOI

Wang Y, Telesford KM, Ochoa-Repáraz J, Haque-Begum S, Christy M, Kasper EJ, et al. . An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat Commun (2014) 5:4432. doi: 10.1038/ncomms5432 PubMed DOI PMC

Telesford KM, Yan W, Ochoa-Reparaz J, Pant A, Kircher C, Christy MA, et al. . A commensal symbiotic factor derived from bacteroides fragilis promotes human CD39+Foxp3+ T cells and treg function. Gut Microbes (2015) 6:234–42. doi: 10.1080/19490976.2015.1056973 PubMed DOI PMC

Wang Y, Begum-Haque S, Telesford KM, Ochoa-Repáraz J, Christy M, Kasper EJ, et al. . A commensal bacterial product elicits and modulates migratory capacity of CD39+ CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes (2014) 5:552–61. doi: 10.4161/gmic.29797 PubMed DOI

Wekerle H. Brain autoimmunity and intestinal microbiota: 100 trillion game changers. Trends Immunol (2017) 38:483–97. doi: 10.1016/j.it.2017.03.008 PubMed DOI

Kadowaki A, Quintana FJ. The gut–CNS axis in multiple sclerosis. Trends Neurosci (2020) 43:622–634. doi: 10.1016/j.tins.2020.06.002 PubMed DOI PMC

Lavrnja I, Bjelobaba I, Stojiljkovic M, Pekovic S, Mostarica-Stojkovic M, Stosic-Grujicic S, et al. . Time-course changes in ectonucleotidase activities during experimental autoimmune encephalomyelitis. Neurochem Int (2009) 55:193–8. doi: 10.1016/j.neuint.2009.02.013 PubMed DOI

Jakovljevic M, Lavrnja I, Bozic I, Milosevic A, Bjelobaba I, Savic D, et al. . Induction of NTPDase1/CD39 by reactive microglia and macrophages is associated with the functional state during EAE. Front Neurosci (2019) 13:410. doi: 10.3389/fnins.2019.00410 PubMed DOI PMC

Bahrini K, Belghith M, Maghrebi O, Bekir J, Kchaou M, Jeridi C, et al. . Discriminative expression of CD39 and CD73 in cerebrospinal fluid of patients with multiple sclerosis and neuro-behçet’s disease. Cytokine (2020) 130:155054. doi: 10.1016/j.cyto.2020.155054 PubMed DOI

Haskó G, Sitkovsky MV, Szabó C. Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci (2004) 25:152–57. doi: 10.1016/j.tips.2004.01.006 PubMed DOI

Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, et al. . CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA (2008) 105:9325–30. doi: 10.1073/pnas.0711175105 PubMed DOI PMC

Filipello F, Pozzi D, Proietti M, Romagnani A, Mazzitelli S, Matteoli M, et al. . Ectonucleotidase activity and immunosuppression in astrocyte-CD4 T cell bidirectional signaling. Oncotarget (2016) 7:5143–56. doi: 10.18632/oncotarget.6914 PubMed DOI PMC

Ulivieri C, De Tommaso D, Finetti F, Ortensi B, Pelicci G, D’Elios MM, et al. . A T cell suppressive circuitry mediated by CD39 and regulated by ShcC/RAI is induced in astrocytes by encephalitogenic T cells. Front Immunol (2019) 10:1041. doi: 10.3389/fimmu.2019.01041 PubMed DOI PMC

Duarte-Silva E, Macedo D, Maes M, Peixoto CA. Novel insights into the mechanisms underlying depression-associated experimental autoimmune encephalomyelitis. Prog Neuropsychopharmacol Biol Psychiatry (2019) 93:1–10. doi: 10.1016/j.pnpbp.2019.03.001 PubMed DOI

Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, et al. . Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res (2021) 163:105363. doi: 10.1016/j.phrs.2020.105363 PubMed DOI

Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new “5-HT” hypothesis of depression: Cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to th. Prog Neuropsychopharmacol Biol Psychiatry (2011) 35:702–21. doi: 10.1016/j.pnpbp.2010.12.017 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...