Clinical, splicing, and functional analysis to classify BRCA2 exon 3 variants: Application of a points-based ACMG/AMP approach
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
203477/Z/16/Z
Wellcome Trust - United Kingdom
RP-2016-07- 011
Department of Health - United Kingdom
PubMed
35979650
PubMed Central
PMC10946542
DOI
10.1002/humu.24449
Knihovny.cz E-resources
- Keywords
- ACMG/AMP classification, BRCA2, dPCR, functional analysis, quantitation, splicing,
- MeSH
- Alternative Splicing MeSH
- Genes, BRCA2 * MeSH
- Humans MeSH
- RNA, Messenger genetics metabolism MeSH
- RNA Splice Sites * MeSH
- Mice MeSH
- BRCA2 Protein genetics metabolism MeSH
- RNA Splicing MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- BRCA2 protein, human MeSH Browser
- RNA, Messenger MeSH
- RNA Splice Sites * MeSH
- BRCA2 Protein MeSH
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
Ambry Genetics Aliso Viejo California USA
Breast Cancer Research Programme Cancer Research Malaysia Subang Jaya Selangor Malaysia
Center for Genomic Medicine Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
Centre for Medical Genetics Ghent University Gent Belgium
Centro de Investigación en Red de Enfermedades Raras Madrid Spain
Clinical Cancer Research Center Aalborg University Hospital Aalborg Denmark
Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Clinical Genetics Aarhus University Hospital Aarhus N Denmark
Department of Clinical Genetics Maastricht University Medical Center Maastricht the Netherlands
Department of Clinical Genetics Odense University Hospital Odence C Denmark
Department of Clinical Genetics Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
Department of Clinical Medicine Aalborg University Aalborg Denmark
Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
Department of Molecular Medicine Aarhus University Hospital Aarhus Denmark
Department of OB GYN and Comprehensive Cancer Center Medical University of Vienna Vienna Austria
Department of Pathology and Biomedical Science University of Otago Christchurch New Zealand
Department of Surgery Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
Department of Tumour Biology The Norwegian Radium Hospital Oslo University Hospital Oslo Norway
Division of Oncology Department of Clinical Sciences Lund Lund University Lund Sweden
Fundación Pública Galega de Medicina Xenómica Santiago de Compostela Spain
Hereditary Cancer Clinic Nelune Comprehensive Cancer Care Centre Sydney New South Wales Australia
Human Development and Health Faculty of Medicine University of Southampton Southampton UK
Institute for Medical Informatics Statistics and Epidemiology University of Leipzig Leipzig Germany
Middlesex Health Shoreline Cancer Center Westbrook Connecticut USA
Molecular Diagnostics Aalborg University Hospital Aalborg Denmark
Molecular Oncology Laboratory CIBERONC Hospital Clinico San Carlos IdISSC Madrid Spain
Parkville Familial Cancer Centre Peter MacCallum Cancer Center Melbourne Victoria Australia
Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne Victoria Australia
See more in PubMed
Abou Tayoun, A. N. , Pesaran, T. , DiStefano, M. T. , Oza, A. , Rehm, H. L. , Biesecker, L. G. , & Harrison, S. M. (2018). Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Human Mutation, 39(11), 1517–1524. 10.1002/humu.23626 PubMed DOI PMC
Biswas, K. , Das, R. , Eggington, J. M. , Qiao, H. , North, S. L. , Stauffer, S. , Burkett, S. S. , Martin, B. K. , Southon, E. , Sizemore, S. C. , Pruss, D. , Bowles, K. R. , Roa, B. B. , Hunter, N. , Tessarollo, L. , Wenstrup, R. J. , Byrd, R. A. , & Sharan, S. K. (2012). Functional evaluation of BRCA2 variants mapping to the PALB2‐binding and C‐terminal DNA‐binding domains using a mouse ES cell‐based assay. Human Molecular Genetics, 21(18), 3993–4006. 10.1093/hmg/dds222 PubMed DOI PMC
Canson, D. , Glubb, D. , & Spurdle, A. B. (2020). Variant effect on splicing regulatory elements, branchpoint usage, and pseudoexonization: Strategies to enhance bioinformatic prediction using hereditary cancer genes as exemplars. Human Mutation, 41(10), 1705–1721. 10.1002/humu.24074 PubMed DOI
Caputo, S. , Telly, D. , Briaux, A. , Sesen, J. , Ceppi, M. , Bonnet, F. , Bourdon, V. , Coulet, F. , Castera, L. , Delnatte, C. , Hardouin, A. , Mazoyer, S. , Schultz, I. , Sevenet, N. , Uhrhammer, N. , Bonnet, C. , Tilkin‐Mariamé, A. F. , Houdayer, C. , Moncoutier, V. , … Rouleau, E. (2021). 5' Region large genomic rearrangements in the BRCA1 gene in French families: Identification of a tandem triplication and nine distinct deletions with five recurrent breakpoints. Cancers, 13(13):3171. 10.3390/cancers13133171 PubMed DOI PMC
Caputo, S. M. , Léone, M. , Damiola, F. , Ehlen, A. , Carreira, A. , Gaidrat, P. , Martins, A. , Brandão, R. D. , Peixoto, A. , Vega, A. , Houdayer, C. , Delnatte, C. , Bronner, M. , Muller, D. , Castera, L. , Guillaud‐Bataille, M. , Søkilde, I. , Uhrhammer, N. , Demontety, S. , … Rouleau, E. (2018). Full in‐frame exon 3 skipping of BRCA2 confers high risk of breast and/or ovarian cancer. Oncotarget, 9(25), 17334–17348. 10.18632/oncotarget.24671 PubMed DOI PMC
Cartegni, L. , Chew, S. L. , & Krainer, A. R. (2002). Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nature Reviews Genetics, 3(4), 285–298. 10.1038/nrg775 PubMed DOI
Colombo, M. , Lòpez‐Perolio, I. , Meeks, H. D. , Caleca, L. , Parsons, M. T. , Li, H. , De Vecchi, G. , Tudini, E. , Foglia, C. , Mondini, P. , Manoukian, S. , Behar, R. , Garcia, E. B. G. , Meindl, A. , Montagna, M. , Niederacher, D. , Schmidt, A. Y. , Varesco, L. , Wappenschmidt, B. , … Radice, P. (2018). The BRCA2 c.68‐7T > A variant is not pathogenic: A model for clinical calibration of spliceogenicity. Human Mutation, 39, 729–741. 10.1002/humu.23411 PubMed DOI PMC
Conner, B. R. , Hernandez, F. , Souders, B. , Landrith, T. , Boland, C. R. , & Karam, R. (2019). RNA analysis identifies pathogenic duplications in MSH2 in patients with lynch syndrome. Gastroenterology, 156(6), 1924–1925. 10.1053/j.gastro.2019.01.248 PubMed DOI PMC
Diez, O. , Gutierrez‐Enriquez, S. , Ramon y Cajal, T. , Alonso, C. , Balmana, J. , & Llort, G. (2007). Caution should be used when interpreting alterations affecting the exon 3 of the BRCA2 gene in breast/ovarian cancer families. Journal of Clinical Oncology, 25(31), 5035–5036. 10.1200/JCO.2007.13.4346 PubMed DOI
Dines, J. N. , Shirts, B. H. , Slavin, T. P. , Walsh, T. , King, M. C. , Fowler, D. M. , & Pritchard, C. C. (2020). Systematic misclassification of missense variants in BRCA1 and BRCA2 “coldspots”. Genetics in Medicine, 22(5), 825–830. 10.1038/s41436-019-0740-6 PubMed DOI PMC
Dorling, L. , Carvalho, S. , Allen, J. , González‐Neira, A. , Luccarini, C. , Wahlström, C. , Pooley, K. A. , Parsons, M. T. , Fortuno, C. , Wang, Q. , Bolla, M. K. , Dennis, J. , Keeman, R. , Alonso, M. R. , Álvarez, N. , Herraez, B. , Fernandez, V. , Núñez‐Torres, R. , Osorio, A. , … Rookus, M. A. (2021). Breast cancer risk genes – Association analysis in more than 113,000 women. New England Journal of Medicine, 384(5), 428–439. 10.1056/NEJMoa1913948 PubMed DOI PMC
Easton, D. F. , Deffenbaugh, A. M. , Pruss, D. , Frye, C. , Wenstrup, R. J. , Allen‐Brady, K. , Tavtigian, S. V. , Monteiro, A. N. , Iversen, E. S. , Couch, F. J. , & Goldgar, D. E. (2007). A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer‐predisposition genes. American Journal of Human Genetics, 81(5), 873–883. 10.1086/521032 PubMed DOI PMC
Fackenthal, J. D. , Yoshimatsu, T. , Zhang, B. , de Garibay, G. R. , Colombo, M. , De Vecchi, G. , Ayoub, S. C. , Lal, K. , Olopade, O. I. , Vega, A. , Santamariña, M. , Blanco, A. , Wappenschmidt, B. , Becker, A. , Houdayer, C. , Walker, L. C. , López‐Perolio, I. , Thomassen, M. , Parsons, M. , … de la Hoya, M. (2016). Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples. Journal of Medical Genetics, 53(8), 548–558. 10.1136/jmedgenet-2015-103570 PubMed DOI
Farber‐Katz, S. , Hsuan, V. , Wu, S. , Landrith, T. , Vuong, H. , Xu, D. , Li, B. , Hoo, J. , Lam, S. , Nashed, S. , Toppmeyer, D. , Gray, P. , Haynes, G. , Lu, H. M. , Elliott, A. , Tippin Davis, B. , & Karam, R. (2018). Quantitative analysis of BRCA1 and BRCA2 germline splicing variants using a novel RNA‐massively parallel sequencing assay. Frontiers in Oncology, 8, 286. 10.3389/fonc.2018.00286 PubMed DOI PMC
Fraile‐Bethencourt, E. , Valenzuela‐Palomo, A. , Diez‐Gomez, B. , Goina, E. , Acedo, A. , Buratti, E. , & Velasco, E. A. (2019). Mis‐splicing in breast cancer: Identification of pathogenic BRCA2 variants by systematic minigene assays. Journal of Pathology, 248(4), 409–420. 10.1002/path.5268 PubMed DOI
de Garibay, G. R. , Acedo, A. , García‐Casado, Z. , Gutiérrez‐Enríquez, S. , Tosar, A. , Romero, A. , Garre, P. , Llort, G. , Thomassen, M. , Díez, O. , Pérez‐Segura, P. , Díaz‐Rubio, E. , Velasco, E. A. , Caldés, T. , & de la Hoya, M. (2014). Capillary electrophoresis analysis of conventional splicing assays: IARC analytical and clinical classification of 31 BRCA2 genetic variants. Human Mutation, 35(1), 53–57. 10.1002/humu.22456 PubMed DOI
Gayther, S. A. , Mangion, J. , Russell, P. , Seal, S. , Barfoot, R. , Ponder, B. A. , Stratton, M. R. , & Easton, D. (1997). Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nature Genetics, 15(1), 103–105. 10.1038/ng0197-103 PubMed DOI
Goldgar, D. E. , Easton, D. F. , Byrnes, G. B. , Spurdle, A. B. , Iversen, E. S. , Greenblatt, M. S. , & IARC Unclassified Genetic Variants Working Group . (2008). Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Human Mutation, 29(11), 1265–1272. 10.1002/humu.20897 PubMed DOI PMC
Goldgar, D. E. , Easton, D. F. , Deffenbaugh, A. M. , Monteiro, A. N. , Tavtigian, S. V. , Couch, F. J. , & Breast Cancer Information Core Steering, C. (2004). Integrated evaluation of DNA sequence variants of unknown clinical significance: Application to BRCA1 and BRCA2. American Journal of Human Genetics, 75(4), 535–544. 10.1086/424388 PubMed DOI PMC
Guidugli, L. , Shimelis, H. , Masica, D. L. , Pankratz, V. S. , Lipton, G. B. , Singh, N. , Hu, C. , Monteiro, A. , Lindor, N. M. , Goldgar, D. E. , Karchin, R. , Iversen, E. S. , & Couch, F. J. (2018). Assessment of the clinical relevance of BRCA2 missense variants by functional and computational approaches. American Journal of Human Genetics, 102, 233–248. 10.1016/j.ajhg.2017.12.013 PubMed DOI PMC
Hartford, S. A. , Chittela, R. , Ding, X. , Vyas, A. , Martin, B. , Burkett, S. , Haines, D. C. , Southon, E. , Tessarollo, L. , & Sharan, S. K. (2016). Interaction with PALB2 is essential for maintenance of genomic integrity by BRCA2. PLoS Genetics, 12(8):e1006236. 10.1371/journal.pgen.1006236 PubMed DOI PMC
de la Hoya, M. , Soukarieh, O. , López‐Perolio, I. , Vega, A. , Walker, L. C. , van Ierland, Y. , Baralle, D. , Santamariña, M. , Lattimore, V. , Wijnen, J. , Whiley, P. , Blanco, A. , Raponi, M. , Hauke, J. , Wappenschmidt, B. , Becker, A. , Hansen, T. V. , Behar, R. , Investigators, K. , … Spurdle, A. B. (2016). Combined genetic and splicing analysis of BRCA1 c.[594‐2A>C; 641A>G] highlights the relevance of naturally occurring in‐frame transcripts for developing disease gene variant classification algorithms. Human Molecular Genetics, 25(11), 2256–2268. 10.1093/hmg/ddw094 PubMed DOI PMC
http://agvgd.hci.utah.edu/
http://fengbj-laboratory.org/BayesDel/BayesDel.html
https://spliceailookup.broadinstitute.org
http://varnomen.hgvs.org/
Ikegami, M. , Kohsaka, S. , Ueno, T. , Momozawa, Y. , Inoue, S. , Tamura, K. , Shimomura, A. , Hosoya, N. , Kobayashi, H. , Tanaka, S. , & Mano, H. (2020). High‐throughput functional evaluation of BRCA2 variants of unknown significance. Nature Communications, 11(1), 2573. 10.1038/s41467-020-16141-8 PubMed DOI PMC
Jaganathan, K. , Kyriazopoulou Panagiotopoulou, S. , McRae, J. F. , Darbandi, S. F. , Knowles, D. , Li, Y. I. , Kosmicki, J. A. , Arbelaez, J. , Cui, W. , Schwartz, G. B. , Chow, E. D. , Kanterakis, E. , Gao, H. , Kia, A. , Batzoglou, S. , Sanders, S. J. , & Farh, K. K. (2019). Predicting splicing from primary sequence with deep learning. Cell, 176(3), 535–548. 10.1016/j.cell.2018.12.015 PubMed DOI
Landrith, T. , Li, B. , Cass, A. A. , Conner, B. R. , LaDuca, H. , McKenna, D. B. , Maxwell, K. N. , Domchek, S. , Morman, N. A. , Heinlen, C. , Wham, D. , Koptiuch, C. , Vagher, J. , Rivera, R. , Bunnell, A. , Patel, G. , Geurts, J. L. , Depas, M. M. , Gaonkar, S. , … Karam, R. (2020). Splicing profile by capture RNA‐seq identifies pathogenic germline variants in tumor suppressor genes. npj Precision Oncology, 4, 4. 10.1038/s41698-020-0109-y PubMed DOI PMC
Li, H. , LaDuca, H. , Pesaran, T. , Chao, E. C. , Dolinsky, J. S. , Parsons, M. , Spurdle, A. B. , Polley, E. C. , Shimelis, H. , Hart, S. N. , Hu, C. , Couch, F. J. , & Goldgar, D. E. (2020). Classification of variants of uncertain significance in BRCA1 and BRCA2 using personal and family history of cancer from individuals in a large hereditary cancer multigene panel testing cohort. Genetics in Medicine, 22(4), 701–708. 10.1038/s41436-019-0729-1 PubMed DOI PMC
Mesman, R. , Calléja, F. , Hendriks, G. , Morolli, B. , Misovic, B. , Devilee, P. , van Asperen, C. J. , Vrieling, H. , & Vreeswijk, M. (2019). The functional impact of variants of uncertain significance in BRCA2. Genetics in Medicine, 21(2), 293–302. 10.1038/s41436-018-0052-2 PubMed DOI PMC
Mesman, R. L. S. , Calleja, F. , de la Hoya, M. , Devilee, P. , van Asperen, C. J. , Vrieling, H. , & Vreeswijk, M. P. G. (2020). Alternative mRNA splicing can attenuate the pathogenicity of presumed loss‐of‐function variants in BRCA2. Genetics in Medicine, 22(8), 1355–1365. 10.1038/s41436-020-0814-5 PubMed DOI PMC
Mohammadi, L. , Vreeswijk, M. P. , Oldenburg, R. , van den Ouweland, A. , Oosterwijk, J. C. , van der Hout, A. H. , Hoogerbrugge, N. , Ligtenberg, M. , Ausems, M. G. , van der Luijt, R. B. , Dommering, C. J. , Gille, J. J. , Verhoef, S. , Hogervorst, F. B. , van Os, T. A. , Gómez García, E. , Blok, M. J. , Wijnen, J. T. , Helmer, Q. , … van Houwelingen, H. C. (2009). A simple method for co‐segregation analysis to evaluate the pathogenicity of unclassified variants; BRCA1 and BRCA2 as an example. BMC Cancer, 9, 211. 10.1186/1471-2407-9-211 PubMed DOI PMC
Montalban, G. , Fraile‐Bethencourt, E. , López‐Perolio, I. , Pérez‐Segura, P. , Infante, M. , Durán, M. , Alonso‐Cerezo, M. C. , López‐Fernández, A. , Diez, O. , de la Hoya, M. , Velasco, E. A. , & Gutiérrez‐Enríquez, S. (2018). Characterization of spliceogenic variants located in regions linked to high levels of alternative splicing: BRCA2 c.7976+5G > T as a case study. Human Mutation, 39(9), 1155–1160. 10.1002/humu.23583 PubMed DOI
Nacson, J. , Di Marcantonio, D. , Wang, Y. , Bernhardy, A. J. , Clausen, E. , Hua, X. , Cai, K. Q. , Martinez, E. , Feng, W. , Callén, E. , Wu, W. , Gupta, G. P. , Testa, J. R. , Nussenzweig, A. , Sykes, S. M. , & Johnson, N. (2020). BRCA1 mutational complementation induces synthetic viability. Molecular Cell, 78(5), 951–959. 10.1016/j.molcel.2020.04.006 PubMed DOI PMC
Nix, P. , Mundt, E. , Coffee, B. , Goossen, E. , Warf, B. M. , Brown, K. , Bowles, K. , & Roa, B. (2021). Interpretation of BRCA2 splicing variants: A case series of challenging variant interpretations and the importance of functional RNA analysis. Familial Cancer, 21, 7–19. 10.1007/s10689-020-00224-y PubMed DOI PMC
Nordling, M. , Karlsson, P. , Wahlstrom, J. , Engwall, Y. , Wallgren, A. , & Martinsson, T. (1998). A large deletion disrupts the exon 3 transcription activation domain of the BRCA2 gene in a breast/ovarian cancer family. Cancer Research, 58(7), 1372–1375. PubMed
Oliver, A. W. , Swift, S. , Lord, C. J. , Ashworth, A. , & Pearl, L. H. (2009). Structural basis for recruitment of BRCA2 by PALB2. EMBO Reports, 10(9), 990–996. 10.1038/embor.2009.126 PubMed DOI PMC
Parsons, M. T. , Tudini, E. , Li, H. , Hahnen, E. , Wappenschmidt, B. , Feliubadaló, L. , Aalfs, C. M. , Agata, S. , Aittomäki, K. , Alducci, E. , Alonso‐Cerezo, M. C. , Arnold, N. , Auber, B. , Austin, R. , Azzollini, J. , Balmaña, J. , Barbieri, E. , Bartram, C. R. , Blanco, A. , … Pohl‐Rescigno, E. (2019). Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification. Human Mutation, 40(9), 1557–1578. 10.1002/humu.23818 PubMed DOI PMC
Peixoto, A. , Santos, C. , Rocha, P. , Pinheiro, M. , Príncipe, S. , Pereira, D. , Rodrigues, H. , Castro, F. , Abreu, J. , Gusmão, L. , Amorim, A. , & Teixeira, M. R. (2009). The c.156_157insAlu BRCA2 rearrangement accounts for more than one‐fourth of deleterious BRCA mutations in northern/central Portugal. Breast Cancer Research and Treatment, 114(1), 31–38. 10.1007/s10549-008-9978-4 PubMed DOI
Richards, S. , Aziz, N. , Bale, S. , Bick, D. , Das, S. , Gastier‐Foster, J. , Grody, W. W. , Hegde, M. , Lyon, E. , Spector, E. , Voelkerding, K. , Rehm, H. L. , & ACMG Laboratory Quality Assurance, C. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–424. 10.1038/gim.2015.30 PubMed DOI PMC
Sanz, D. J. , Acedo, A. , Infante, M. , Durán, M. , Pérez‐Cabornero, L. , Esteban‐Cardeñosa, E. , Lastra, E. , Pagani, F. , Miner, C. , & Velasco, E. A. (2010). A high proportion of DNA variants of BRCA1 and BRCA2 is associated with aberrant splicing in breast/ovarian cancer patients. Clinical Cancer Research, 16(6), 1957–1967. 10.1158/1078-0432.CCR-09-2564 PubMed DOI
Shamsani, J. , Kazakoff, S. H. , Armean, I. M. , McLaren, W. , Parsons, M. T. , Thompson, B. A. , O'Mara, T. A. , Hunt, S. E. , Waddell, N. , & Spurdle, A. B. (2019). A plugin for the ensembl variant effect predictor that uses MaxEntScan to predict variant spliceogenicity. Bioinformatics, 35(13), 2315–2317. 10.1093/bioinformatics/bty960 PubMed DOI PMC
Spurdle, A. B. , Couch, F. J. , Parsons, M. T. , McGuffog, L. , Barrowdale, D. , Bolla, M. K. , Wang, Q. , Healey, S. , Schmutzler, R. , Wappenschmidt, B. , Rhiem, K. , Hahnen, E. , Engel, C. , Meindl, A. , Ditsch, N. , Arnold, N. , Plendl, H. , Niederacher, D. , Sutter, C. , … Henderson, B. E. (2014). Refined histopathological predictors of BRCA1 and BRCA2 mutation status: a large‐scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Research, 16(6):3419. 10.1186/s13058-014-0474-y PubMed DOI PMC
Spurdle, A. B. , Healey, S. , Devereau, A. , Hogervorst, F. B. , Monteiro, A. N. , Nathanson, K. L. , Radice, P. , Stoppa‐Lyonnet, D. , Tavtigian, S. , Wappenschmidt, B. , Couch, F. J. , & Goldgar, D. E. , ENIGMA . (2012). ENIGMA—Evidence‐based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Human Mutation, 33(1), 2–7. 10.1002/humu.21628 PubMed DOI PMC
Sy, S. M. , Huen, M. S. , & Chen, J. (2009). PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7155–7160. 10.1073/pnas.0811159106 PubMed DOI PMC
Tavtigian, S. V. , Byrnes, G. B. , Goldgar, D. E. , & Thomas, A. (2008). Classification of rare missense substitutions, using risk surfaces, with genetic‐ and molecular‐epidemiology applications. Human Mutation, 29(11), 1342–1354. 10.1002/humu.20896 PubMed DOI PMC
Tavtigian, S. V. , Greenblatt, M. S. , Harrison, S. M. , Nussbaum, R. L. , Prabhu, S. A. , Boucher, K. M. , Biesecker, L. G. , & ClinGen Sequence Variant Interpretation Working Group (ClinGen SVI) . (2018). Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genetics in Medicine, 20(9), 1054–1060. 10.1038/gim.2017.210 PubMed DOI PMC
Tavtigian, S. V. , Harrison, S. M. , Boucher, K. M. , & Biesecker, L. G. (2020). Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines. Human Mutation, 41, 1734–1737. 10.1002/humu.24088 PubMed DOI PMC
Thomassen, M. , Blanco, A. , Montagna, M. , Hansen, T. V. , Pedersen, I. S. , Gutiérrez‐Enríquez, S. , Menéndez, M. , Fachal, L. , Santamariña, M. , Steffensen, A. Y. , Jønson, L. , Agata, S. , Whiley, P. , Tognazzo, S. , Tornero, E. , Jensen, U. B. , Balmaña, J. , Kruse, T. A. , Goldgar, D. E. , … Vega, A. (2012). Characterization of BRCA1 and BRCA2 splicing variants: A collaborative report by ENIGMA consortium members. Breast Cancer Research and Treatment, 132(3), 1009–1023. 10.1007/s10549-011-1674-0 PubMed DOI
Thompson, D. , Easton, D. F. , & Goldgar, D. E. (2003). A full‐likelihood method for the evaluation of causality of sequence variants from family data. American Journal of Human Genetics, 73(3), 652–655. 10.1086/378100 PubMed DOI PMC
Tubeuf, H. , Caputo, S. M. , Sullivan, T. , Rondeaux, J. , Krieger, S. , Caux‐Moncoutier, V. , Hauchard, J. , Castelain, G. , Fiévet, A. , Meulemans, L. , Révillion, F. , Léoné, M. , Boutry‐Kryza, N. , Delnatte, C. , Guillaud‐Bataille, M. , Cleveland, L. , Reid, S. , Southon, E. , Soukarieh, O. , … Martins, A. (2020). Calibration of pathogenicity due to variant‐induced leaky splicing defects by using BRCA2 exon 3 as a model system. Cancer Research, 80(17), 3593–3605. 10.1158/0008-5472.CAN-20-0895 PubMed DOI PMC
Valenzuela‐Palomo, A. , Bueno‐Martínez, E. , Sanoguera‐Miralles, L. , Lorca, V. , Fraile‐Bethencourt, E. , Esteban‐Sánchez, A. , Gómez‐Barrero, S. , Carvalho, S. , Allen, J. , García‐Álvarez, A. , Pérez‐Segura, P. , Dorling, L. , Easton, D. F. , Devilee, P. , Vreeswijk, M. P. , de la Hoya, M. , & Velasco, E. A. (2022). Splicing predictions, minigene analyses, and ACMG‐AMP clinical classification of 42 germline PALB2 splice‐site variants. Journal of Pathology, 256(3), 321–334. 10.1002/path.5839 PubMed DOI PMC
Xia, B. , Sheng, Q. , Nakanishi, K. , Ohashi, A. , Wu, J. , Christ, N. , Liu, X. , Jasin, M. , Couch, F. J. , & Livingston, D. M. (2006). Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Molecular Cell, 22(6), 719–729. 10.1016/j.molcel.2006.05.022 PubMed DOI
Yeo, G. , & Burge, C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. Journal of Computational Biology, 11(2–3), 377–394. 10.1089/1066527041410418 PubMed DOI