Emergent Role of IFITM1/3 towards Splicing Factor (SRSF1) and Antigen-Presenting Molecule (HLA-B) in Cervical Cancer
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/C511599/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
36008984
PubMed Central
PMC9405601
DOI
10.3390/biom12081090
PII: biom12081090
Knihovny.cz E-resources
- Keywords
- interferon (IFN), interferon-induced transmembrane 1 and 3 (IFITM1/3), isoform of serine and arginine-rich splicing factor 1 (SRSF1), mRNA, ribosome,
- MeSH
- Antigens, Differentiation metabolism MeSH
- HLA-B Antigens * metabolism MeSH
- Humans MeSH
- Membrane Proteins genetics metabolism MeSH
- RNA, Messenger genetics MeSH
- Uterine Cervical Neoplasms * genetics MeSH
- RNA-Binding Proteins genetics metabolism MeSH
- Serine-Arginine Splicing Factors genetics MeSH
- RNA Splicing Factors MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Differentiation MeSH
- HLA-B Antigens * MeSH
- IFITM3 protein, human MeSH Browser
- leu-13 antigen MeSH Browser
- Membrane Proteins MeSH
- RNA, Messenger MeSH
- RNA-Binding Proteins MeSH
- Serine-Arginine Splicing Factors MeSH
- RNA Splicing Factors MeSH
- SRSF1 protein, human MeSH Browser
The IFITM restriction factors play a role in cancer cell progression through undefined mechanisms. We investigate new protein-protein interactions for IFITM1/3 in the context of cancer that would shed some light on how IFITM1/3 attenuate the expression of targeted proteins such as HLA-B. SBP-tagged IFITM1 protein was used to identify an association of IFITM1 protein with the SRSF1 splicing factor and transporter of mRNA to the ribosome. Using in situ proximity ligation assays, we confirmed a predominant cytosolic protein-protein association for SRSF1 and IFITM1/3. Accordingly, IFITM1/3 interacted with HLA-B mRNA in response to IFNγ stimulation using RNA-protein proximity ligation assays. In addition, RT-qPCR assays in IFITM1/IFITM3 null cells and wt-SiHa cells indicated that HLA-B gene expression at the mRNA level does not account for lowered HLA-B protein synthesis in response to IFNγ. Complementary, shotgun RNA sequencing did not show major transcript differences between IFITM1/IFITM3 null cells and wt-SiHa cells. Furthermore, ribosome profiling using sucrose gradient sedimentation identified a reduction in 80S ribosomal fraction an IFITM1/IFITM3 null cells compared to wild type. It was partially reverted by IFITM1/3 complementation. Our data link IFITM1/3 proteins to HLA-B mRNA and SRSF1 and, all together, our results begin to elucidate how IFITM1/3 catalyze the synthesis of target proteins. IFITMs are widely studied for their role in inhibiting viruses, and multiple studies have associated IFITMs with cancer progression. Our study has identified new proteins associated with IFITMs which support their role in mediating protein expression; a pivotal function that is highly relevant for viral infection and cancer progression. Our results suggest that IFITM1/3 affect the expression of targeted proteins; among them, we identified HLA-B. Changes in HLA-B expression could impact the presentation and recognition of oncogenic antigens on the cell surface by cytotoxic T cells and, ultimately, limit tumor cell eradication. In addition, the role of IFITMs in mediating protein abundance is relevant, as it has the potential for regulating the expression of viral and oncogenic proteins.
Institute of Genetics and Cancer University of Edinburgh Edinburgh EH4 2XU UK
International Centre for Cancer Vaccine Science University of Gdańsk 80 822 Gdańsk Poland
See more in PubMed
Robichaud N., Sonenberg N., Ruggero D., Schneider R.J. Translational Control in Cancer. Cold Spring Harb. Perspect. Biol. 2019;11:a032896. doi: 10.1101/cshperspect.a032896. PubMed DOI PMC
Xu Y., Ruggero D. The Role of Translation Control in Tumorigenesis and Its Therapeutic Implications. Annu. Rev. Cancer Biol. 2020;4:437–457. doi: 10.1146/annurev-cancerbio-030419-033420. DOI
Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005;5:375–386. doi: 10.1038/nri1604. PubMed DOI
Marth C., Windbichler G., Hausmaninger H., Petru E., Estermann K., Pelzer A., Mueller-Holzner E. Interferon-gamma in combination with carboplatin and paclitaxel as a safe and effective first-line treatment option for advanced ovarian cancer: Results of a phase I/II study. Int. J. Gynecol. Cancer. 2006;16:1522–1528. doi: 10.1111/j.1525-1438.2006.00622.x. PubMed DOI
Pujade-Lauraine E., Guastalla J.P., Colombo N., DeVillier P., François E., Fumoleau P., Monnier A., Nooy M., Mignot L., Bugat R., et al. Intraperitoneal recombinant interferon gamma in ovarian cancer patients with residual disease at second-look laparotomy. J. Clin. Oncol. 1996;14:343–350. doi: 10.1200/JCO.1996.14.2.343. PubMed DOI
Windbichler G.H., Hausmaninger H., Stummvoll W., Graf A.H., Kainz C., Lahodny J., Denison U., Müller-Holzner E., Marth C. Interferon-gamma in the first-line therapy of ovarian cancer: A randomized phase III trial. Br. J. Cancer. 2000;82:1138–1144. doi: 10.1054/bjoc.1999.1053. PubMed DOI PMC
Alberts D.S., Marth C., Alvarez R.D., Johnson G., Bidzinski M., Kardatzke D.R., Bradford W.Z., Loutit J., Kirn D.H., Clouser M.C., et al. Randomized phase 3 trial of interferon gamma-1b plus standard carboplatin/paclitaxel versus carboplatin/paclitaxel alone for first-line treatment of advanced ovarian and primary peritoneal carcinomas: Results from a prospectively designed analysis of progression-free survival. Gynecol. Oncol. 2008;109:174–181. doi: 10.1016/J.YGYNO.2008.01.005. PubMed DOI
Tamura K., Makino S., Araki Y., Imamura T., Seita M. Recombinant interferon beta and gamma in the treatment of adult T-cell leukemia. Cancer. 1987;59:1059–1062. doi: 10.1002/1097-0142(19870315)59:6<1059::AID-CNCR2820590602>3.0.CO;2-M. PubMed DOI
Van der Kooij M.K., Verdegaal E.M.E., Visser M., Visser M., de Bruin L., van der Minne C.E., Meij P.M., Roozen I.C.F.M., Jonker M.A., van den Bosch S., et al. Phase I/II study protocol to assess safety and efficacy of adoptive cell therapy with anti-PD-1 plus low-dose pegylated-interferon-alpha in patients with metastatic melanoma refractory to standard of care treatments: The ACTME trial. BMJ Open. 2020;10:e044036. doi: 10.1136/BMJOPEN-2020-044036. PubMed DOI PMC
Ives N.J., Suciu S., Eggermont A.M.M., Kirkwood J., Lorigan P., Markovic S.N., Garbe C., Wheatley K., Bufalino R., Cameron D., et al. Adjuvant interferon-α for the treatment of high-risk melanoma: An individual patient data meta-analysis. Eur. J. Cancer. 2017;82:171–183. doi: 10.1016/j.ejca.2017.06.006. PubMed DOI
Parker B.S., Rautela J., Hertzog P.J. Antitumour actions of interferons: Implications for cancer therapy. Nat. Rev. Cancer. 2016;16:131–144. doi: 10.1038/nrc.2016.14. PubMed DOI
Budhwani M., Mazzieri R., Dolcetti R. Plasticity of Type I Interferon-Mediated Responses in Cancer Therapy: From Anti-tumor Immunity to Resistance. Front. Oncol. 2018;8:322. doi: 10.3389/fonc.2018.00322. PubMed DOI PMC
Green D.S., Nunes A.T., Annunziata C.M., Zoon K.C. Monocyte and interferon based therapy for the treatment of ovarian cancer. Cytokine Growth Factor Rev. 2016;29:109–115. doi: 10.1016/j.cytogfr.2016.02.006. PubMed DOI PMC
Booy S., Hofland L., van Eijck C. Potentials of Interferon Therapy in the Treatment of Pancreatic Cancer. J. Interf. Cytokine Res. 2015;35:327–339. doi: 10.1089/jir.2014.0157. PubMed DOI
Wang B.X., Rahbar R., Fish E.N. Interferon: Current Status and Future Prospects in Cancer Therapy. J. Interf. Cytokine Res. 2011;31:545–552. doi: 10.1089/jir.2010.0158. PubMed DOI
Kolosenko I., Fryknäs M., Forsberg S., Johnsson P., Cheon H., Holvey-Bates E.G., Edsbäcker E., Pellegrini P., Rassoolzadeh H., Brnjic S., et al. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int. J. Cancer. 2015;136:E51–E61. doi: 10.1002/ijc.29161. PubMed DOI
Wallace T.A., Martin D.N., Ambs S. Interactions among genes, tumor biology and the environment in cancer health disparities: Examining the evidence on a national and global scale. Carcinogenesis. 2011;32:1107–1121. doi: 10.1093/carcin/bgr066. PubMed DOI PMC
Weichselbaum R.R., Ishwaran H., Yoon T., Nuyten D.S.A., Baker S.W., Khodarev N., Su A.W., Shaikh A.Y., Roach P., Kreike B., et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc. Natl. Acad. Sci. USA. 2008;105:18490–18495. doi: 10.1073/pnas.0809242105. PubMed DOI PMC
Cheon H., Borden E.C., Stark G.R. Interferons and Their Stimulated Genes in the Tumor Microenvironment. Semin. Oncol. 2014;41:156–173. doi: 10.1053/j.seminoncol.2014.02.002. PubMed DOI PMC
Jorgovanovic D., Song M., Wang L., Zhang Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark. Res. 2020;8:49. doi: 10.1186/s40364-020-00228-x. PubMed DOI PMC
Bekisz J., Schmeisser H., Hernandez J., Goldman N.D., Zoon K.C. Mini ReviewHuman Interferons Alpha, Beta and Omega. Growth Factors. 2004;22:243–251. doi: 10.1080/08977190400000833. PubMed DOI
Borden E.C., Sen G.C., Uze G., Silverman R.H., Ransohoff R.M., Foster G.R., Stark G.R. Interferons at age 50: Past, current and future impact on biomedicine. Nat. Rev. Drug Discov. 2007;6:975–990. doi: 10.1038/nrd2422. PubMed DOI PMC
Darnell J.E., Jr., Kerr I.M., Stark G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–1421. doi: 10.1126/science.8197455. PubMed DOI
Williams B.R.G. Transcriptional regulation of interferon-stimulated genes. JBIC J. Biol. Inorg. Chem. 1991;200:111–121. doi: 10.1111/j.1432-1033.1991.tb21041.x. PubMed DOI
Bailey C.C., Zhong G., Huang I.-C., Farzan M. IFITM-Family Proteins: The Cell's First Line of Antiviral Defense. Annu. Rev. Virol. 2014;1:261–283. doi: 10.1146/annurev-virology-031413-085537. PubMed DOI PMC
Jia R., Ding S., Pan Q., Liu S.-L., Qiao W., Liang C. The C-Terminal Sequence of IFITM1 Regulates Its Anti-HIV-1 Activity. PLoS ONE. 2015;10:e0118794. doi: 10.1371/journal.pone.0118794. PubMed DOI PMC
Weston S., Czieso S., White I.J., Smith S., Kellam P., Marsh M. A Membrane Topology Model for Human Interferon Inducible Transmembrane Protein 1. PLoS ONE. 2014;9:e104341. doi: 10.1371/journal.pone.0104341. PubMed DOI PMC
Amini-Bavil-Olyaee S., Choi Y.J., Lee J.H., Shi M., Huang I.-C., Farzan M., Jung J.U. The Antiviral Effector IFITM3 Disrupts Intracellular Cholesterol Homeostasis to Block Viral Entry. Cell Host Microbe. 2013;13:452–464. doi: 10.1016/j.chom.2013.03.006. PubMed DOI PMC
Yu F., Xie D., Ng S.S., Lum C.T., Cai M.-Y., Cheung W.K., Kung H.-F., Lin G., Wang X., Lin M.C. IFITM1 promotes the metastasis of human colorectal cancer via CAV-1. Cancer Lett. 2015;368:135–143. doi: 10.1016/j.canlet.2015.07.034. PubMed DOI
Xu Y., Yang G., Hu G. Binding of IFITM1 enhances the inhibiting effect of caveolin-1 on ERK activation. Acta Biochim. Biophys. Sin. 2009;41:488–494. doi: 10.1093/abbs/gmp034. PubMed DOI
Narayana S.K., Helbig K.J., McCartney E.M., Eyre N.S., Bull R.A., Eltahla A., Lloyd A.R., Beard M.R. The Interferon-induced Transmembrane Proteins, IFITM1, IFITM2, and IFITM3 Inhibit Hepatitis C Virus Entry. J. Biol. Chem. 2015;290:25946–25959. doi: 10.1074/jbc.M115.657346. PubMed DOI PMC
Zhao X., Li J., Winkler C.A., An P., Guo J.-T. IFITM Genes, Variants, and Their Roles in the Control and Pathogenesis of Viral Infections. Front. Microbiol. 2019;9:3228. doi: 10.3389/fmicb.2018.03228. PubMed DOI PMC
Wu T.H., Schreiber K., Arina A., Khodarev N.N., Efimova E.V., Rowley D.A., Weichselbaum R.R., Schreiber H. Progression of cancer from indolent to aggressive despite antigen retention and increased expression of interferon-gamma inducible genes—PubMed. Cancer Immunol. 2011;11:2. PubMed PMC
Borg D., Hedner C., Gaber A., Nodin B., Fristedt R., Jirström K., Eberhard J., Johnsson A. Expression of IFITM1 as a prognostic biomarker in resected gastric and esophageal adenocarcinoma. Biomark. Res. 2016;4:10. doi: 10.1186/s40364-016-0064-5. PubMed DOI PMC
Györffy B., Dietel M., Fekete T., Lage H. A snapshot of microarray-generated gene expression signatures associated with ovarian carcinoma. Int. J. Gynecol. Cancer. 2008;18:1215–1233. doi: 10.1111/j.1525-1438.2007.01169.x. PubMed DOI
Sari I.N., Yang Y.-G., Phi L., Kim H., Baek M.J., Jeong D., Kwon H.Y. Interferon-Induced Transmembrane Protein 1 (IFITM1) Is Required for the Progression of Colorectal Cancer. Oncotarget. 2016;7:86039. doi: 10.18632/oncotarget.13325. PubMed DOI PMC
Fan J., Peng Z., Zhou C., Qiu G., Tang H., Sun Y., Wang X., Li Q., Le X., Xie K. Gene-expression profiling in Chinese patients with colon cancer by coupling experimental and bioinformatic genomewide gene-expression analyses. Cancer. 2008;113:266–275. doi: 10.1002/cncr.23551. PubMed DOI
Liu Y., Lu R., Cui W., Pang Y., Liu C., Cui L., Qian T., Quan L., Dai Y., Jiao Y., et al. High IFITM3 expression predicts adverse prognosis in acute myeloid leukemia. Cancer Gene Ther. 2020;27:38–44. doi: 10.1038/s41417-019-0093-y. PubMed DOI
Wang H., Tang F., Bian E., Zhang Y., Ji X., Yang Z., Zhao B. IFITM3/STAT3 axis promotes glioma cells invasion and is modulated by TGF-β. Mol. Biol. Rep. 2020;47:433–441. doi: 10.1007/s11033-019-05146-2. PubMed DOI
Ogony J., Choi H.J., Lui A., Cristofanilli M., Lewis-Wambi J. Interferon-induced transmembrane protein 1 (IFITM1) overexpression enhances the aggressive phenotype of SUM149 inflammatory breast cancer cells in a signal transducer and activator of transcription 2 (STAT2)-dependent manner. Breast Cancer Res. 2016;18:25. doi: 10.1186/s13058-016-0683-7. PubMed DOI PMC
Khodarev N.N., Roizman B., Weichselbaum R.R. Molecular Pathways: Interferon/Stat1 Pathway: Role in the Tumor Resistance to Genotoxic Stress and Aggressive Growth. Clin. Cancer Res. 2012;18:3015–3021. doi: 10.1158/1078-0432.CCR-11-3225. PubMed DOI
Lee W.-Y.J., Fu R.M., Liang C., Sloan R.D. IFITM proteins inhibit HIV-1 protein synthesis. Sci. Rep. 2018;8:14551. doi: 10.1038/s41598-018-32785-5. PubMed DOI PMC
Gómez-Herranz M., Nekulova M., Faktor J., Hernychova L., Kote S., Sinclair E.H., Nenutil R., Vojtesek B., Ball K.L., Hupp T.R. The effects of IFITM1 and IFITM3 gene deletion on IFNγ stimulated protein synthesis. Cell. Signal. 2019;60:39–56. doi: 10.1016/j.cellsig.2019.03.024. PubMed DOI PMC
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Sanford J.R., Gray N.K., Beckmann K., Cáceres J.F. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 2004;18:755–768. doi: 10.1101/gad.286404. PubMed DOI PMC
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Pan Z., Chen S., Pan X., Wang Z., Han H., Zheng W., Wang X., Li F., Qu S., Shao R. Differential gene expression identified in Uigur women cervical squamous cell carcinoma by suppression subtractive hybridization. Neoplasma. 2010;57:123–128. doi: 10.4149/neo_2010_02_123. PubMed DOI
Kim T.-J., Choi J., Kim W.Y., Choi C.H., Lee J.-W., Bae D.-S., Son D.-S., Kim J., Park B.K., Ahn G., et al. Gene expression profiling for the prediction of lymph node metastasis in patients with cervical cancer. Cancer Sci. 2008;99:31–38. doi: 10.1111/j.1349-7006.2007.00652.x. PubMed DOI PMC
Siegrist F., Ebeling M., Certa U. The Small Interferon-Induced Transmembrane Genes and Proteins. J. Interf. Cytokine Res. 2011;31:183–197. doi: 10.1089/jir.2010.0112. PubMed DOI
Winkler M., Wrensch F., Bosch P., Knoth M., Schindler M., Gärtner S., Pöhlmann S. Analysis of IFITM-IFITM Interactions by a Flow Cytometry-Based FRET Assay. Int. J. Mol. Sci. 2019;20:3859. doi: 10.3390/ijms20163859. PubMed DOI PMC
Rahman K., A Coomer C., Majdoul S., Ding S.Y., Padilla-Parra S., A Compton A. Homology-guided identification of a conserved motif linking the antiviral functions of IFITM3 to its oligomeric state. eLife. 2020;9:e58537. doi: 10.7554/eLife.58537. PubMed DOI PMC
Seyfried N.T., Huysentruyt L.C., Atwood J.A., Xia Q., Seyfried T.N., Orlando R. Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: A membrane proteomics approach. Cancer Lett. 2008;263:243–252. doi: 10.1016/j.canlet.2008.01.007. PubMed DOI PMC
Keefe A.D., Wilson D.S., Seelig B., Szostak J.W. One-Step Purification of Recombinant Proteins Using a Nanomolar-Affinity Streptavidin-Binding Peptide, the SBP-Tag. Protein Expr. Purif. 2001;23:440–446. doi: 10.1006/prep.2001.1515. PubMed DOI
Haward F., Maslon M.M., Yeyati P.L., Bellora N., Hansen J.N., Aitken S., Lawson J., von Kriegsheim A., Wachten D., Mill P., et al. Nucleo-cytoplasmic shuttling of splicing factor SRSF1 is required for development and cilia function. eLife. 2021;10:e65104. doi: 10.7554/eLife.65104. PubMed DOI PMC
Jeong S. SR Proteins: Binders, Regulators, and Connectors of RNA. Mol. Cells. 2017;40:1–9. doi: 10.14348/molcells.2017.2319. PubMed DOI PMC
Maslon M., Heras S.R., Bellora N., Eyras E., Cáceres J.F. The translational landscape of the splicing factor SRSF1 and its role in mitosis. eLife. 2014;3:e02028. doi: 10.7554/eLife.02028. PubMed DOI PMC
Cáceres J.F., Screaton G.R., Krainer A.R. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 1998;12:55–66. doi: 10.1101/gad.12.1.55. PubMed DOI PMC
Zheng X., Peng Q., Wang L., Zhang X., Huang L., Wang J., Qin Z. Serine/arginine-rich splicing factors: The bridge linking alternative splicing and cancer. Int. J. Biol. Sci. 2020;16:2442–2453. doi: 10.7150/ijbs.46751. PubMed DOI PMC
Weibrecht I., Leuchowius K.-J., Clausson C.-M., Conze T., Jarvius M., Howell W.M., Kamali-Moghaddam M., Söderberg O. Proximity ligation assays: A recent addition to the proteomics toolbox. Expert Rev. Proteom. 2010;7:401–409. doi: 10.1586/epr.10.10. PubMed DOI
Roussis I.M., Myers F.A., Scarlett G.P. RNA Whole-Mount In Situ Hybridization Proximity Ligation Assay (rISH-PLA), an Assay for Detecting RNA-Protein Complexes in Intact Cells. Curr. Protoc. Cell Biol. 2017;74:17.20.1–17.20.10. doi: 10.1002/cpcb.13. PubMed DOI
Tuladhar R., Yeu Y., Piazza J.T., Tan Z., Clemenceau J.R., Wu X., Barrett Q., Herbert J., Mathews D.H., Kim J., et al. CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat. Commun. 2019;10:4056. doi: 10.1038/s41467-019-12028-5. PubMed DOI PMC
Feng J., Cao Z., Wang L., Wan Y., Peng N., Wang Q., Chen X., Zhou Y., Zhu Y. Inducible GBP5 Mediates the Antiviral Response via Interferon-Related Pathways during Influenza A Virus Infection. J. Innate Immun. 2017;9:419–435. doi: 10.1159/000460294. PubMed DOI PMC
Mach B., Steimle V., Martinez-Soria E., Reith W. Regulation of MHC class II genes: Lessons from a Disease. Annu. Rev. Immunol. 1996;14:301–331. doi: 10.1146/annurev.immunol.14.1.301. PubMed DOI
Soejima K., Rollins B.J. A Functional IFN-γ-Inducible Protein-10/CXCL10-Specific Receptor Expressed by Epithelial and Endothelial Cells That Is Neither CXCR3 Nor Glycosaminoglycan. J. Immunol. 2001;167:6576–6582. doi: 10.4049/jimmunol.167.11.6576. PubMed DOI
Erdal E., Haider S., Rehwinkel J., Harris A.L., McHugh P.J. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev. 2017;31:353–369. doi: 10.1101/gad.289769.116. PubMed DOI PMC
Robledo S., Idol R.A., Crimmins D.L., Ladenson J.H., Mason P.J., Bessler M. The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA. 2008;14:1918–1929. doi: 10.1261/rna.1132008. PubMed DOI PMC
Wu W.-C., Liu H.-W., Lin A. Human ribosomal protein L7 displays an ER binding property and is involved in ribosome-ER association. FEBS Lett. 2007;581:651–657. doi: 10.1016/j.febslet.2007.01.023. PubMed DOI
Lee J., Robinson M.E., Ma N., Artadji D., Ahmed M.A., Xiao G., Sadras T., Deb G., Winchester J., Cosgun K.N., et al. IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature. 2020;588:491–497. doi: 10.1038/s41586-020-2884-6. PubMed DOI PMC
Zhu X., Shen Z., Man D., Ruan H., Huang S. miR-152-3p Affects the Progression of Colon Cancer via the KLF4/IFITM3 Axis. Comput. Math. Methods Med. 2020;2020:8209504. doi: 10.1155/2020/8209504. PubMed DOI PMC
Yang J., Li L., Xi Y., Sun R., Wang H., Ren Y., Zhao L., Wang X., Li X. Combination of IFITM1 knockdown and radiotherapy inhibits the growth of oral cancer. Cancer Sci. 2018;109:3115–3128. doi: 10.1111/cas.13640. PubMed DOI PMC
Yang G., Xu Y., Chen X., Hu G. IFITM1 plays an essential role in the antiproliferative action of interferon-γ. Oncogene. 2007;26:594–603. doi: 10.1038/sj.onc.1209807. PubMed DOI
Zheng W., Zhao Z., Yi X., Zuo Q., Li H., Guo X., Li D., He H., Pan Z., Fan P., et al. Down-regulation of IFITM1 and its growth inhibitory role in cervical squamous cell carcinoma. Cancer Cell Int. 2017;17:88. doi: 10.1186/s12935-017-0456-0. PubMed DOI PMC
Das S., Krainer A.R. Emerging Functions of SRSF1, Splicing Factor and Oncoprotein, in RNA Metabolism and Cancer. Mol. Cancer Res. 2014;12:1195–1204. doi: 10.1158/1541-7786.MCR-14-0131. PubMed DOI PMC
Neumann F., Krawinkel U. Constitutive Expression of Human Ribosomal Protein L7 Arrests the Cell Cycle in G1and Induces Apoptosis in Jurkat T-Lymphoma Cells. Exp. Cell Res. 1997;230:252–261. doi: 10.1006/excr.1996.3417. PubMed DOI
Neumann F., Hemmerich P., Von Mikecz A., Peter H.-H., Krawinkel U. Human ribosomal protein L7 inhibits cell-free translation in reticulocyte lysates and affects the expression of nuclear proteins upon stable transfection into Jurkat T-lymphoma cells. Nucleic Acids Res. 1995;23:195–202. doi: 10.1093/nar/23.2.195. PubMed DOI PMC
Connor M.E., Stern P.L. Loss of MHC class-I expression in cervical carcinomas. Int. J. Cancer. 1990;46:1029–1034. doi: 10.1002/ijc.2910460614. PubMed DOI
Cromme F.V., Meijer C.J., Snijders P.J., Uyterlinde A.M., Kenemans P., Helmerhorst T.J.M., Stern P.L., Brule A.J.V.D., Walboomers J.M. Analysis of MHC class I and II expression in relation to presence of HPV genotypes in premalignant and malignant cervical lesions. Br. J. Cancer. 1993;67:1372–1380. doi: 10.1038/bjc.1993.254. PubMed DOI PMC
Honma S., Tsukada S., Honda S., Nakamura M., Takakuwa K., Maruhashi T., Kodama S., Kanazawa K., Takahashi T., Tanaka K. Biological-clinical significance of selective loss of HLA-class-I allelic product expression in squamous-cell carcinoma of the uterine cervix. Int. J. Cancer. 1994;57:650–655. doi: 10.1002/ijc.2910570507. PubMed DOI
Torres L.M., Cabrera T., Concha A., Oliva M.R., Ruiz-Cabello F., Garrido F. HLA class I expression and HPV-16 sequences in premalignant and malignant lesions of the cervix. Tissue Antigens. 1993;41:65–71. doi: 10.1111/j.1399-0039.1993.tb01981.x. PubMed DOI
Koopman L.A., Corver W.E., van der Slik A.R., Giphart M.J., Fleuren G.J. Multiple Genetic Alterations Cause Frequent and Heterogeneous Human Histocompatibility Leukocyte Antigen Class I Loss in Cervical Cancer. J. Exp. Med. 2000;191:961–976. doi: 10.1084/jem.191.6.961. PubMed DOI PMC
Ferns D.M., Heeren A.M., Samuels S., Bleeker M.C.G., de Gruijl T.D., Kenter G.G., Jordanova E.S. Classical and non-classical HLA class I aberrations in primary cervical squamous- and adenocarcinomas and paired lymph node metastases. J. Immunother. Cancer. 2016;4:78. doi: 10.1186/s40425-016-0184-3. PubMed DOI PMC
Cromme F.V., Airey J., Heemels M.T., Ploegh H.L., Keating P.J., Stern P.L., Meijer C.J., Walboomers J.M. Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J. Exp. Med. 1994;179:335–340. doi: 10.1084/jem.179.1.335. PubMed DOI PMC
Dryad
10.5061/dryad.c59zw3r92