IFITM1 as a modulator of surfaceome dynamics and aggressive phenotype in cervical cancer cells
Jazyk angličtina Země Řecko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40314078
PubMed Central
PMC12059461
DOI
10.3892/or.2025.8904
PII: 71
Knihovny.cz E-zdroje
- Klíčová slova
- antigen presentation, cervical cancer, immunosurveillance, interferon‑induced transmembrane proteins, invasion, mass spectrometry, membrane protein, migration, surfaceome,
- MeSH
- buněčná adheze MeSH
- diferenciační antigeny * metabolismus genetika MeSH
- fenotyp MeSH
- interferon gama farmakologie metabolismus MeSH
- lidé MeSH
- membránové proteiny * metabolismus genetika MeSH
- nádorové buněčné linie MeSH
- nádory děložního čípku * patologie genetika metabolismus imunologie MeSH
- pohyb buněk MeSH
- proteiny vázající RNA * metabolismus genetika MeSH
- proteom * MeSH
- proteomika metody MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diferenciační antigeny * MeSH
- IFITM3 protein, human MeSH Prohlížeč
- interferon gama MeSH
- leu-13 antigen MeSH Prohlížeč
- membránové proteiny * MeSH
- proteiny vázající RNA * MeSH
- proteom * MeSH
Interferon‑induced transmembrane proteins (IFITMs) are frequently overexpressed in cancer cells, including cervical carcinoma cells, and play a role in the progression of various cancer types. However, their mechanisms of action remain incompletely understood. In the present study, by employing a combination of surface membrane protein isolation and quantitative mass spectrometry, it was comprehensively described how the IFITM1 protein influences the composition of the cervical cancer cell surfaceome. Additionally, the effects of interferon‑γ on protein expression and cell surface exposure were evaluated in the presence and absence of IFITM1. The IFITM1‑regulated membrane and membrane‑associated proteins identified are involved mainly in processes such as endocytosis and lysosomal transport, cell‑cell and cell‑extracellular matrix adhesion, antigen presentation and the immune response. To complement the proteomic data, gene expression was analyzed using reverse transcription‑quantitative PCR to distinguish whether the observed changes in protein levels were attributable to transcriptional regulation or differential protein dynamics. Furthermore, the proteomic and gene expression data are supported by functional studies demonstrating the impact of the IFITM1 and IFITM3 proteins on the adhesive, migratory and invasive capabilities of cervical cancer cells, as well as their interactions with immune cells.
Zobrazit více v PubMed
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–263. doi: 10.3322/caac.21834. PubMed DOI
D'Augè TG, Donato VD, Giannini A. Strategic approaches in management of early-stage cervical cancer: A comprehensive editorial. Clin Exp Obstet Gynecol. 2024;51:235. doi: 10.31083/j.ceog5110235. DOI
Garg P, Krishna M, Subbalakshmi AR, Ramisetty S, Mohanty A, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging biomarkers and molecular targets for precision medicine in cervical cancer. Biochim Biophys Acta Rev Cancer. 2024;1879:189106. doi: 10.1016/j.bbcan.2024.189106. PubMed DOI
D'Oria O, Bogani G, Cuccu I, D'Auge TG, Di Donato V, Caserta D, Giannini A. Pharmacotherapy for the treatment of recurrent cervical cancer: An update of the literature. Expert Opin Pharmacother. 2024;25:55–65. doi: 10.1080/14656566.2023.2298329. PubMed DOI
Bausch-Fluck D, Goldmann U, Müller S, van Oostrum M, Müller M, Schubert OT, Wollscheid B. The in silico human surfaceome. Proc Natl Acad Sci USA. 2018;115:E10988–E10997. doi: 10.1073/pnas.1808790115. PubMed DOI PMC
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol. 2022;13:1042368. doi: 10.3389/fimmu.2022.1042368. PubMed DOI PMC
Narayana SK, Helbig KJ, McCartney EM, Eyre NS, Bull RA, Eltahla A, Lloyd AR, Beard MR. The interferon-induced transmembrane proteins, IFITM1, IFITM2, and IFITM3 inhibit hepatitis C virus entry. J Biol Chem. 2015;290:25946–25959. doi: 10.1074/jbc.M115.657346. PubMed DOI PMC
Prelli Bozzo C, Nchioua R, Volcic M, Koepke L, Krüger J, Schütz D, Heller S, Stürzel CM, Kmiec D, Conzelmann C, et al. IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun. 2021;12:4584. doi: 10.1038/s41467-021-24817-y. PubMed DOI PMC
Ren L, Du S, Xu W, Li T, Wu S, Jin N, Li C. Current progress on host antiviral factor IFITMs. Front Immunol. 2020;11:543444. doi: 10.3389/fimmu.2020.543444. PubMed DOI PMC
Liao Y, Goraya MU, Yuan X, Zhang B, Chiu SH, Chen JL. Functional involvement of interferon-inducible trans-membrane proteins in antiviral immunity. Front Microbiol. 2019;10:1097. doi: 10.3389/fmicb.2019.01097. PubMed DOI PMC
Gómez-Herranz M, Taylor J, Sloan RD. IFITM proteins: Understanding their diverse roles in viral infection, cancer, and immunity. J Biol Chem. 2023;299:102741. doi: 10.1016/j.jbc.2022.102741. PubMed DOI PMC
Li K, Markosyan RM, Zheng YM, Golfetto O, Bungart B, Li M, Ding S, He Y, Liang C, Lee JC, et al. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog. 2013;9:e1003124. doi: 10.1371/journal.ppat.1003124. PubMed DOI PMC
Amini-Bavil-Olyaee S, Choi YJ, Lee JH, Shi M, Huang IC, Farzan M, Jung JU. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe. 2013;13:452–464. doi: 10.1016/j.chom.2013.03.006. PubMed DOI PMC
Rahman K, Datta SAK, Beaven AH, Jolley AA, Sodt AJ, Compton AA. Cholesterol binds the amphipathic helix of IFITM3 and regulates antiviral activity. J Mol Biol. 2022;434:167759. doi: 10.1016/j.jmb.2022.167759. PubMed DOI PMC
Spence JS, He R, Hoffmann HH, Das T, Thinon E, Rice CM, Peng T, Chandran K, Hang HC. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat Chem Biol. 2019;15:259–268. doi: 10.1038/s41589-018-0213-2. PubMed DOI PMC
Gerlach T, Hensen L, Matrosovich T, Bergmann J, Winkler M, Peteranderl C, Klenk HD, Weber F, Herold S, Pöhlmann S, Matrosovich M. pH optimum of hemagglutinin-mediated membrane fusion determines sensitivity of influenza A viruses to the interferon-induced antiviral state and IFITMs. J Virol. 2017;91:e00246–17. doi: 10.1128/JVI.00246-17. PubMed DOI PMC
Wee YS, Roundy KM, Weis JJ, Weis JH. Interferon-inducible transmembrane proteins of the innate immune response act as membrane organizers by influencing clathrin and v-ATPase localization and function. Innate Immun. 2012;18:834–845. doi: 10.1177/1753425912443392. PubMed DOI
Gómez-Herranz M, Nekulova M, Faktor J, Hernychova L, Kote S, Sinclair EH, Nenutil R, Vojtesek B, Ball KL, Hupp TR. The effects of IFITM1 and IFITM3 gene deletion on IFNγ stimulated protein synthesis. Cell Signal. 2019;60:39–56. doi: 10.1016/j.cellsig.2019.03.024. PubMed DOI PMC
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update) Nucleic Acids Res. 2022;50:W216–W221. doi: 10.1093/nar/gkac194. PubMed DOI PMC
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2020;49:D605–D612. doi: 10.1093/nar/gkaa1074. PubMed DOI PMC
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. J Invest Dermatol. 2017;137:e11–e16. doi: 10.1016/j.jid.2016.11.020. PubMed DOI
Suarez-Arnedo A, Figueroa FT, Clavijo C, Arbeláez P, Cruz JC, Muñoz-Camargo C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS One. 2020;15:e0232565. doi: 10.1371/journal.pone.0232565. PubMed DOI PMC
Aslan M, Hsu EC, Liu S, Stoyanova T. Quantifying the invasion and migration ability of cancer cells with a 3D Matrigel drop invasion assay. Biol Methods Protoc. 2021;6:bpab014. doi: 10.1093/biomethods/bpab014. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Nekulová M, Wyszkowska M, Friedlová N, Uhrík L, Zavadil Kokáš F, Hrabal V, Hernychová L, Vojtěšek B, Hupp TR, Szymański MR. Biochemical evidence for conformational variants in the anti-viral and pro-metastatic protein IFITM1. Biol Chem. 2024;405:311–324. doi: 10.1515/hsz-2023-0327. PubMed DOI
Gómez-Herranz M, Faktor J, Yébenes Mayordomo M, Pilch M, Nekulova M, Hernychova L, Ball KL, Vojtesek B, Hupp TR, Kote S. Emergent role of IFITM1/3 towards splicing factor (SRSF1) and antigen-presenting molecule (HLA-B) in cervical cancer. Biomolecules. 2022;12:1090. doi: 10.3390/biom12081090. PubMed DOI PMC
Suh HS, Cosenza-Nashat M, Choi N, Zhao ML, Li JF, Pollard JW, Jirtle RL, Goldstein H, Lee SC. Insulin-like growth factor 2 receptor is an IFNgamma-inducible microglial protein that facilitates intracellular HIV replication: Implications for HIV-induced neurocognitive disorders. Am J Pathol. 2010;177:2446–2458. doi: 10.2353/ajpath.2010.100399. PubMed DOI PMC
Pirault J, Polyzos KA, Petri MH, Ketelhuth DFJ, Bäck M, Hansson GK. The inflammatory cytokine interferon-gamma inhibits sortilin-1 expression in hepatocytes via the JAK/STAT pathway. Eur J Immunol. 2017;47:1918–1924. doi: 10.1002/eji.201646768. PubMed DOI
Ferragut F, Vachetta VS, Troncoso MF, Rabinovich GA, Elola MT. ALCAM/CD166: A pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev. 2021;61:27–37. doi: 10.1016/j.cytogfr.2021.07.001. PubMed DOI
Wu Z, Wu Z, Li J, Yang X, Wang Y, Yu Y, Ye J, Xu C, Qin W, Zhang Z. MCAM is a novel metastasis marker and regulates spreading, apoptosis and invasion of ovarian cancer cells. Tumour Biol. 2012;33:1619–1628. doi: 10.1007/s13277-012-0417-0. PubMed DOI PMC
Kawada M, Inoue H, Kajikawa M, Sugiura M, Sakamoto S, Urano S, Karasawa C, Usami I, Futakuchi M, Masuda T. A novel monoclonal antibody targeting coxsackie virus and adenovirus receptor inhibits tumor growth in vivo. Sci Rep. 2017;7:40400. doi: 10.1038/srep40400. PubMed DOI PMC
Li J, Li Y, Wang H, Shen L, Wang Q, Shao S, Shen Y, Xu H, Liu H, Cai R, Feng W. Neoadjuvant chemotherapy with weekly cisplatin and paclitaxel followed by chemoradiation for locally advanced cervical cancer. BMC Cancer. 2023;23:51. doi: 10.1186/s12885-023-10517-x. PubMed DOI PMC
Tewari KS, Colombo N, Monk BJ, Dubot C, Cáceres MV, Hasegawa K, Shapira-Frommer R, Salman P, Yañez E, Gümüs M, et al. Pembrolizumab or placebo plus chemotherapy with or without bevacizumab for persistent, recurrent, or metastatic cervical cancer: Subgroup analyses from the KEYNOTE-826 randomized clinical trial. JAMA Oncol. 2024;10:185. doi: 10.1001/jamaoncol.2023.5410. PubMed DOI PMC
Monk BJ, Enomoto T, Kast WM, McCormack M, Tan DSP, Wu X, González-Martín A. Integration of immunotherapy into treatment of cervical cancer: Recent data and ongoing trials. Cancer Treat Rev. 2022;106:102385. doi: 10.1016/j.ctrv.2022.102385. PubMed DOI PMC
Kumar Kore R, Shirbhate E, Singh V, Mishra A, Veerasamy R, Rajak H. New investigational drug's targeting various molecular pathways for treatment of cervical cancer: Current status and future prospects. Cancer Invest. 2024;42:627–642. doi: 10.1080/07357907.2024.2373841. PubMed DOI
Bailey CC, Zhong G, Huang IC, Farzan M. IFITM-family proteins: The cell's first line of antiviral defense. Annu Rev Virol. 2014;1:261–283. doi: 10.1146/annurev-virology-031413-085537. PubMed DOI PMC
Liang R, Li X, Zhu X. Deciphering the roles of IFITM1 in tumors. Mol Diagn Ther. 2020;24:433–441. doi: 10.1007/s40291-020-00469-4. PubMed DOI
Weichselbaum RR, Ishwaran H, Yoon T, Nuyten DS, Baker SW, Khodarev N, Su AW, Shaikh AY, Roach P, Kreike B, et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci USA. 2008;105:18490–18495. doi: 10.1073/pnas.0809242105. PubMed DOI PMC
Popson SA, Ziegler ME, Chen X, Holderfield MT, Shaaban CI, Fong AH, Welch-Reardon KM, Papkoff J, Hughes CC. Interferon-induced transmembrane protein 1 regulates endothelial lumen formation during angiogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1011–1019. doi: 10.1161/ATVBAHA.114.303352. PubMed DOI PMC
Wilkins C, Woodward J, Lau DTY, Barnes A, Joyce M, McFarlane N, McKeating JA, Tyrrell DL, Gale M., Jr IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology. 2013;57:461–469. doi: 10.1002/hep.26066. PubMed DOI PMC
Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais C, Porrot F, Guivel-Benhassine F, Van der Werf S, et al. Syncytia formation by SARS-CoV-2-infected cells. EMBO J. 2020;39:e106267. doi: 10.15252/embj.2020106267. PubMed DOI PMC
Chmielewska AM, Gómez-Herranz M, Gach P, Nekulova M, Bagnucka MA, Lipińska AD, Rychłowski M, Hoffmann W, Król E, Vojtesek B, et al. The role of IFITM proteins in tick-borne encephalitis virus infection. J Virol. 2022;96:e0113021. doi: 10.1128/JVI.01130-21. PubMed DOI PMC
Basile A, Zannella C, De Marco M, Sanna G, Franci G, Galdiero M, Manzin A, De Laurenzi V, Chetta M, Rosati A, et al. Spike-mediated viral membrane fusion is inhibited by a specific anti-IFITM2 monoclonal antibody. Antiviral Res. 2023;211:105546. doi: 10.1016/j.antiviral.2023.105546. PubMed DOI
Meischel T, Fritzlar S, Villalon-Letelier F, Tessema MB, Brooks AG, Reading PC, Londrigan SL. IFITM proteins that restrict the early stages of respiratory virus infection do not influence late-stage replication. J Virol. 2021;95:e0083721. doi: 10.1128/JVI.00837-21. PubMed DOI PMC
Jia R, Xu F, Qian J, Yao Y, Miao C, Zheng YM, Liu SL, Guo F, Geng Y, Qiao W, Liang C. Identification of an endocytic signal essential for the antiviral action of IFITM3. Cell Microbiol. 2014;16:1080–1093. doi: 10.1111/cmi.12262. PubMed DOI PMC
Ishikawa-Sasaki K, Murata T, Sasaki J. IFITM1 enhances nonenveloped viral RNA replication by facilitating cholesterol transport to the Golgi. PLoS Pathog. 2023;19:e1011383. doi: 10.1371/journal.ppat.1011383. PubMed DOI PMC
von Lersner A, Droesen L, Zijlstra A. Modulation of cell adhesion and migration through regulation of the immunoglobulin superfamily member ALCAM/CD166. Clin Exp Metastasis. 2019;36:87–95. doi: 10.1007/s10585-019-09957-2. PubMed DOI PMC
Shen X, Li M, Lei Y, Lu S, Wang S, Liu Z, Wang C, Zhao Y, Wang A, Bi C, Zhu G. An integrated analysis of single-cell and bulk transcriptomics reveals EFNA1 as a novel prognostic biomarker for cervical cancer. Hum Cell. 2022;35:705–720. doi: 10.1007/s13577-022-00679-4. PubMed DOI
Owczarek C, Elmasry Y, Parsons M. Contributions of coxsackievirus adenovirus receptor to tumorigenesis. Biochem Soc Trans. 2023;51:1143–1155. doi: 10.1042/BST20221203. PubMed DOI PMC
Liu F, Wu Q, Dong Z, Liu K. Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther. 2023;247:108458. doi: 10.1016/j.pharmthera.2023.108458. PubMed DOI
Diao B, Sun C, Yu P, Zhao Z, Yang P. LAMA5 promotes cell proliferation and migration in ovarian cancer by activating Notch signaling pathway. FASEB J. 2023;37:e23109. doi: 10.1096/fj.202300306R. PubMed DOI
Wang L, Zhou X, Zhou T, Ma D, Chen S, Zhi X, Yin L, Shao Z, Ou Z, Zhou P. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J Cancer Res Clin Oncol. 2008;134:365–372. doi: 10.1007/s00432-007-0292-z. PubMed DOI
Yang Y, Koh YW, Sari IN, Jun N, Lee S, Phi LTH, Kim KS, Wijaya YT, Lee SH, Baek MJ, et al. Interferon-induced transmembrane protein 1-mediated EGFR/SOX2 signaling axis is essential for progression of non-small cell lung cancer. Int J Cancer. 2019;144:2020–2032. doi: 10.1002/ijc.31926. PubMed DOI PMC
Hatano H, Kudo Y, Ogawa I, Tsunematsu T, Kikuchi A, Abiko Y, Takata T. IFN-induced transmembrane protein 1 promotes invasion at early stage of head and neck cancer progression. Clin Cancer Res. 2008;14:6097–6105. doi: 10.1158/1078-0432.CCR-07-4761. PubMed DOI
Liang Y, Li E, Min J, Gong C, Gao J, Ai J, Liao W, Wu L. MiR-29a suppresses the growth and metastasis of hepatocellular carcinoma through IFITM3. Oncol Rep. 2018;40:3261–3272. PubMed PMC
Zheng W, Zhao Z, Yi X, Zuo Q, Li H, Guo X, Li D, He H, Pan Z, Fan P, et al. Down-regulation of IFITM1 and its growth inhibitory role in cervical squamous cell carcinoma. Cancer Cell Int. 2017;17:88. doi: 10.1186/s12935-017-0456-0. PubMed DOI PMC
Taylor BC, Balko JM. Mechanisms of MHC-I downregulation and role in immunotherapy response. Front Immunol. 2022;13:844866. doi: 10.3389/fimmu.2022.844866. PubMed DOI PMC
She X, Shen S, Chen G, Gao Y, Ma J, Gao Y, Liu Y, Gao G, Zhao Y, Wang C, et al. Immune surveillance of brain metastatic cancer cells is mediated by IFITM1. EMBO J. 2023;42:e111112. doi: 10.15252/embj.2022111112. PubMed DOI PMC
Saveanu L, van Endert P. The role of insulin-regulated aminopeptidase in MHC class I antigen presentation. Front Immunol. 2012;3:57. doi: 10.3389/fimmu.2012.00057. PubMed DOI PMC
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229:152–172. doi: 10.1111/j.1600-065X.2009.00782.x. PubMed DOI PMC
Grewal IS, Foellmer HG, Grewal KD, Xu J, Hardardottir F, Baron JL, Janeway CA, Jr, Flavell RA. Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science. 1996;273:1864–1867. doi: 10.1126/science.273.5283.1864. PubMed DOI
Djureinovic D, Wang M, Kluger HM. Agonistic CD40 antibodies in cancer treatment. Cancers (Basel) 2021;13:1302. doi: 10.3390/cancers13061302. PubMed DOI PMC
Yang Y, Sanders AJ, Ruge F, Dong X, Cui Y, Dou QP, Jia S, Hao C, Ji J, Jiang WG. Activated leukocyte cell adhesion molecule (ALCAM)/CD166 in pancreatic cancer, a pivotal link to clinical outcome and vascular embolism. Am J Cancer Res. 2021;11:5917–5932. PubMed PMC
Jing L, An Y, Cai T, Xiang J, Li B, Guo J, Ma X, Wei L, Tian Y, Cheng X, et al. A subpopulation of CD146+ macrophages enhances antitumor immunity by activating the NLRP3 inflammasome. Cell Mol Immunol. 2023;20:908–923. doi: 10.1038/s41423-023-01047-4. PubMed DOI PMC
Duan H, Jing L, Jiang X, Ma Y, Wang D, Xiang J, Chen X, Wu Z, Yan H, Jia J, et al. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J Clin Invest. 2021;131:e148568. doi: 10.1172/JCI148568. PubMed DOI PMC
Yánez DC, Ross S, Crompton T. The IFITM protein family in adaptive immunity. Immunology. 2020;159:365–372. doi: 10.1111/imm.13163. PubMed DOI PMC
Cai Y, Ji W, Sun C, Xu R, Chen X, Deng Y, Pan J, Yang J, Zhu H, Mei J. Interferon-induced transmembrane protein 3 shapes an inflamed tumor microenvironment and identifies immuno-hot tumors. Front Immunol. 2021;12:704965. doi: 10.3389/fimmu.2021.704965. PubMed DOI PMC
Shen C, Li YJ, Yin QQ, Jiao WW, Li QJ, Xiao J, Sun L, Xu F, Li JQ, Qi H, Shen AD. Identification of differentially expressed transcripts targeted by the knockdown of endogenous IFITM3. Mol Med Rep. 2016;14:4367–4373. doi: 10.3892/mmr.2016.5777. PubMed DOI