Biochemical evidence for conformational variants in the anti-viral and pro-metastatic protein IFITM1
Jazyk angličtina Země Německo Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38379409
DOI
10.1515/hsz-2023-0327
PII: hsz-2023-0327
Knihovny.cz E-zdroje
- Klíčová slova
- IFITM proteins, hydrogen deuterium exchange, oligomerization, protein conformation, protein structure,
- MeSH
- antivirové látky farmakologie chemie metabolismus MeSH
- diferenciační antigeny * metabolismus chemie MeSH
- konformace proteinů * MeSH
- lidé MeSH
- rekombinantní proteiny chemie izolace a purifikace metabolismus biosyntéza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- diferenciační antigeny * MeSH
- leu-13 antigen MeSH Prohlížeč
- rekombinantní proteiny MeSH
Interferon induced transmembrane proteins (IFITMs) play a dual role in the restriction of RNA viruses and in cancer progression, yet the mechanism of their action remains unknown. Currently, there is no data about the basic biochemical features or biophysical properties of the IFITM1 protein. In this work, we report on description and biochemical characterization of three conformational variants/oligomeric species of recombinant IFITM1 protein derived from an Escherichia coli expression system. The protein was extracted from the membrane fraction, affinity purified, and separated by size exclusion chromatography where two distinct oligomeric species were observed in addition to the expected monomer. These species remained stable upon re-chromatography and were designated as "dimer" and "oligomer" according to their estimated molecular weight. The dimer was found to be less stable compared to the oligomer using circular dichroism thermal denaturation and incubation with a reducing agent. A two-site ELISA and HDX mass spectrometry suggested the existence of structural motif within the N-terminal part of IFITM1 which might be significant in oligomer formation. Together, these data show the unusual propensity of recombinant IFITM1 to naturally assemble into very stable oligomeric species whose study might shed light on IFITM1 anti-viral and pro-oncogenic functions in cells.
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Institute of Genetics and Molecular Medicine University of Edinburgh EH4 2XR Edinburgh UK
Zobrazit více v PubMed
Bailey, C.C., Zhong, G., Huang, I.-C., and Farzan, M. (2014). IFITM-family proteins: the cell’s first line of antiviral defense. Annu. Rev. Virol. 1: 261–283, https://doi.org/10.1146/annurev-virology-031413-085537 . PubMed DOI PMC
Brass, A.L., Huang, I.-C., Benita, Y., John, S.P., Krishnan, M.N., Feeley, E.M., Ryan, B.J., Weyer, J.L., Van Der Weyden, L., Fikrig, E., et al.. (2009). The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, west nile virus, and dengue virus. Cell 139: 1243–1254, https://doi.org/10.1016/j.cell.2009.12.017 . PubMed DOI PMC
Chesarino, N.M., McMichael, T.M., and Yount, J.S. (2014). Regulation of the trafficking and antiviral activity of IFITM3 by post-translational modifications. Future Microbiol. 9: 1151–1163, https://doi.org/10.2217/fmb.14.65 . PubMed DOI PMC
Chmielewska, A.M., Gómez-Herranz, M., Gach, P., Nekulova, M., Bagnucka, M.A., Lipińska, A.D., Rychłowski, M., Hoffmann, W., Król, E., Vojtesek, B., et al.. (2022). The role of IFITM proteins in tick-borne encephalitis virus infection. J. Virol. 96: e01130-21, https://doi.org/10.1128/jvi.01130-21 . DOI
Diamond, M.S. and Farzan, M. (2013). The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13: 46–57, https://doi.org/10.1038/nri3344 . PubMed DOI PMC
Errasti-Murugarren, E., Bartoccioni, P., and Palacín, M. (2021). Membrane protein stabilization strategies for structural and functional studies. Membranes (Basel) 11: 155, https://doi.org/10.3390/membranes11020155 . PubMed DOI PMC
Friedlová, N., Zavadil Kokáš, F., Hupp, T.R., Vojtěšek, B., and Nekulová, M. (2022). IFITM protein regulation and functions: far beyond the fight against viruses. Front. Immunol. 13: 1042368, https://doi.org/10.3389/fimmu.2022.1042368 . PubMed DOI PMC
Friedman, R.L., Manly, S.P., McMahon, M., Kerr, I.M., and Stark, G.R. (1984). Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell 38: 745–755, https://doi.org/10.1016/0092-8674(84)90270-8 . PubMed DOI
Gabizon, R. and Friedler, A. (2014). Allosteric modulation of protein oligomerization: an emerging approach to drug design. Front. Chem. 2: 9, https://doi.org/10.3389/fchem.2014.00009 . PubMed DOI PMC
Gómez-Herranz, M., Nekulova, M., Faktor, J., Hernychova, L., Kote, S., Sinclair, E.H., Nenutil, R., Vojtesek, B., Ball, K.L., and Hupp, T.R. (2019). The effects of IFITM1 and IFITM3 gene deletion on IFNγ stimulated protein synthesis. Cell Signalling. 60: 39–56, https://doi.org/10.1016/j.cellsig.2019.03.024 . PubMed DOI PMC
Goodsell, D.S. and Olson, A.J. (2000). Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29: 105–153, https://doi.org/10.1146/annurev.biophys.29.1.105 . PubMed DOI
Jia, R., Ding, S., Pan, Q., Liu, S.-L., Qiao, W., and Liang, C. (2015). The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity. PLoS ONE 10: e0118794, https://doi.org/10.1371/journal.pone.0118794 . PubMed DOI PMC
Jia, R., Pan, Q., Ding, S., Rong, L., Liu, S.-L., Geng, Y., Qiao, W., and Liang, C. (2012). The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. J. Virol. 86: 13697–13707, https://doi.org/10.1128/jvi.01828-12 . DOI
John, S.P., Chin, C.R., Perreira, J.M., Feeley, E.M., Aker, A.M., Savidis, G., Smith, S.E., Elia, A.E.H., Everitt, A.R., Vora, M., et al.. (2013). The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J. Virol. 87: 7837–7852, https://doi.org/10.1128/jvi.00481-13 . DOI
Jones, S. and Thornton, J.M. (1996). Principles of protein-protein interactions. Proc. Natl. Acad. Sci. U.S.A. 93: 13–20, https://doi.org/10.1073/pnas.93.1.13 . PubMed DOI PMC
Krejci, A., Hupp, T.R., Lexa, M., Vojtesek, B., and Muller, P. (2016). Hammock: a hidden Markov model-based peptide clustering algorithm to identify protein-interaction consensus motifs in large datasets. Bioinformatics 32: 9–16, https://doi.org/10.1093/bioinformatics/btv522 . PubMed DOI PMC
Kumari, N. and Yadav, S. (2019). Modulation of protein oligomerization: an overview. Prog. Biophys. Mol. Biol. 149: 99–113, https://doi.org/10.1016/j.pbiomolbio.2019.03.003 . PubMed DOI
Lange, U., Saitou, M., Western, P., Barton, S., and Surani, M. (2003). The Fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev Biol 3: 1, https://doi.org/10.1186/1471-213x-3-1 . PubMed DOI PMC
Liang, R., Li, X., and Zhu, X. (2020). Deciphering the roles of IFITM1 in tumors. Mol Diagn Ther 24: 433–441, https://doi.org/10.1007/s40291-020-00469-4 . PubMed DOI
Mueller, B.K., Subramaniam, S., and Senes, A. (2014). A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα–H hydrogen bonds. Proc. Natl. Acad. Sci. U.S.A. 111: E888–E895, https://doi.org/10.1073/pnas.1319944111 . PubMed DOI PMC
Nemergut, M., Marques, S.M., Uhrik, L., Vanova, T., Nezvedova, M., Gadara, D.C., Jha, D., Tulis, J., Novakova, V., Planas-Iglesias, J., et al.. (2023). Domino-like effect of C112R mutation on ApoE4 aggregation and its reduction by alzheimer’s disease drug candidate. Neuroscience 18: 38, https://doi.org/10.1186/s13024-023-00620-9 . PubMed DOI PMC
Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B.L., Salazar, G.A., Bileschi, M.L., Bork, P., Bridge, A., Colwell, L., et al.. (2023). InterPro in 2022. Nucleic Acids Res. 51: D418–D427, https://doi.org/10.1093/nar/gkac993 . PubMed DOI PMC
Rahman, K., Coomer, C.A., Majdoul, S., Ding, S.Y., Padilla-Parra, S., and Compton, A.A. (2020). Homology-guided identification of a conserved motif linking the antiviral functions of IFITM3 to its oligomeric state. eLife 9: e58537, https://doi.org/10.7554/elife.58537 . PubMed DOI PMC
Schaffert, L.N. and Carter, W.G. (2020). Do post-translational modifications influence protein aggregation in neurodegenerative diseases: a systematic review. Brain Sci. 10: 232, https://doi.org/10.3390/brainsci10040232 . PubMed DOI PMC
Smit, J.H., Krishnamurthy, S., Srinivasu, B.Y., Parakra, R., Karamanou, S., and Economou, A. (2021). Probing universal protein dynamics using hydrogen–deuterium exchange mass spectrometry-derived residue-level gibbs free energy. Anal. Chem. 93: 12840–12847, https://doi.org/10.1021/acs.analchem.1c02155 . PubMed DOI
Smith, R.A., Young, J., Weis, J.J., and Weis, J.H. (2006). Expression of the mouse fragilis gene products in immune cells and association with receptor signaling complexes. Genes Immun. 7: 113–121, https://doi.org/10.1038/sj.gene.6364278 . PubMed DOI
Smith, S., Weston, S., Kellam, P., and Marsh, M. (2014). IFITM proteins—cellular inhibitors of viral entry. Curr. Opin. Virol. 4: 71–77, https://doi.org/10.1016/j.coviro.2013.11.004 . PubMed DOI PMC
Stofella, M., Skinner, S.P., Sobott, F., Houwing-Duistermaat, J., and Paci, E. (2022). High-resolution hydrogen–deuterium protection factors from sparse mass spectrometry data validated by nuclear magnetic resonance measurements. J. Am. Soc. Mass Spectrom. 33: 813–822, https://doi.org/10.1021/jasms.2c00005 . PubMed DOI PMC
Sun, F., Xia, Z., Han, Y., Gao, M., Wang, L., Wu, Y., Sabatier, J.-M., Miao, L., and Cao, Z. (2020). Topology, antiviral functional residues and mechanism of IFITM1. Viruses 12: 295, https://doi.org/10.3390/v12030295 . PubMed DOI PMC
Tanaka, S.S., Yamaguchi, Y.L., Tsoi, B., Lickert, H., and Tam, P.P.L. (2005). IFITM/mil/Fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev. Cell 9: 745–756, https://doi.org/10.1016/j.devcel.2005.10.010 . PubMed DOI
Weston, S., Czieso, S., White, I.J., Smith, S.E., Kellam, P., and Marsh, M. (2014). A membrane topology model for human interferon inducible transmembrane protein 1. Johannes L, editor. PLoS ONE 9: e104341, https://doi.org/10.1371/journal.pone.0104341 . PubMed DOI PMC
Winkler, M., Wrensch, F., Bosch, P., Knoth, M., Schindler, M., Gärtner, S., and Pöhlmann, S. (2019). Analysis of IFITM-IFITM interactions by a flow cytometry-based FRET assay. IJMS 20: 3859, https://doi.org/10.3390/ijms20163859 . PubMed DOI PMC
Yánez, D.C., Ross, S., and Crompton, T. (2020). The IFITM protein family in adaptive immunity. Immunology 159: 365–372, https://doi.org/10.1111/imm.13163 . PubMed DOI PMC
Zhao, X., Guo, F., Liu, F., Cuconati, A., Chang, J., Block, T.M., and Guo, J.-T. (2014). Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. Proc. Natl. Acad. Sci. U.S.A. 111: 6756–6761, https://doi.org/10.1073/pnas.1320856111 . PubMed DOI PMC
Zhao, X., Li, J., Winkler, C.A., An, P., and Guo, J.-T. (2019). IFITM genes, variants, and their roles in the control and pathogenesis of viral infections. Front. Microbiol. 9: 3228, https://doi.org/10.3389/fmicb.2018.03228 . PubMed DOI PMC