High Exogenous Antioxidant, Restorative Treatment (Heart) for Prevention of the Six Stages of Heart Failure: The Heart Diet
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36009183
PubMed Central
PMC9404840
DOI
10.3390/antiox11081464
PII: antiox11081464
Knihovny.cz E-zdroje
- Klíčová slova
- Western diet, bioactive agents, cardiac failure, cardiomyocyte, dietary fat, heart hypertrophy, oxidative stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The exact pathophysiology of heart failure (HF) is not yet known. Western diet, characterized by highly sweetened foods, as well as being rich in fat, fried foods, red meat and processed meat, eggs, and sweet beverages, may cause inflammation, leading to oxidative dysfunction in the cardiac ultra-structure. Oxidative function of the myocardium and how oxidative dysfunction causes physio-pathological remodeling, leading to HF, is not well known. Antioxidants, such as polyphenolics and flavonoids, omega-3 fatty acids, and other micronutrients that are rich in Indo-Mediterranean-type diets, could be protective in sustaining the oxidative functions of the heart. The cardiomyocytes use glucose and fatty acids for the physiological functions depending upon the metabolic requirements of the heart. Apart from toxicity due to glucose, lipotoxicity also adversely affects the cardiomyocytes, which worsen in the presence of deficiency of endogenous antioxidants and deficiency of exogenous antioxidant nutrients in the diet. The high-sugar-and-high-fat-induced production of ceramide, advanced glycation end products (AGE) and triamino-methyl-N-oxide (TMAO) can predispose individuals to oxidative dysfunction and Ca-overloading. The alteration in the biology may start with normal cardiac cell remodeling to biological remodeling due to inflammation. An increase in the fat content of a diet in combination with inducible nitric oxide synthase (NOSi) via N-arginine methyl ester has been found to preserve the ejection fraction in HF. It is proposed that a greater intake of high exogenous antioxidant restorative treatment (HEART) diet, polyphenolics and flavonoids, as well as cessation of red meat intake and egg, can cause improvement in the oxidative function of the heart, by inhibiting oxidative damage to lipids, proteins and DNA in the cell, resulting in beneficial effects in the early stage of the Six Stages of HF. There is an unmet need to conduct cohort studies and randomized, controlled studies to demonstrate the role of the HEART diet in the treatment of HF.
Department of Biotechnology Era University Lucknow 226001 India
Department of Cardiology National University Hospital 1000 Sofia Bulgaria
Halberg Hospital and Research Institute Moradabad 244001 India
International College of Cardiology Laplace LA 90001 USA
International College of Cardiology Richmond Hill ON LL 9955 Canada
Zobrazit více v PubMed
Van der Pol A., van Gilst W.H., Voors A.A., van der Meer P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019;21:425–435. doi: 10.1002/ejhf.1320. PubMed DOI PMC
Singh R.B., Torshin V.I., Chibisov S., Goyal R.K., Watanabe S., Nakagami H., Mogi M., Nayak B.N. Can protective factors inculcate molecular adaptations of cardiomyocyte in the prevention of chronic heart failure? World Heart J. 2019;11:149–157.
Singh R.B., Sozzi F.B., Fedacko J., Hristova K., Fatima G., Pella D., Cornelissen G., Isaza A., Pella D., Singh J., et al. Pre-heart failure at 2D- and 3D-speckle tracking echocardiography: A comprehensive review. Echocardiography. 2022;39:302–309. doi: 10.1111/echo.15284. PubMed DOI
Najjar R.S., Feresin R.G. Protective role of polyphenols in heart failure: Molecular targets and cellular mechanisms underlying their therapeutic potential. Int. J. Mol. Sci. 2021;22:1668. doi: 10.3390/ijms22041668. PubMed DOI PMC
Singh R.B., Komatsu T., Lee M.C., Watanabe S., Nwozo S.O., Kiyoi T., Mogi M., Gaur S.S., Gautam R. Effects of behavioral risk factors with reference to smoking on pathophysiology of cardiomyocyte dysfunction. World Heart J. 2020;12:9–14.
Singh R.B., Fedacko J., Goyal R., Rai R.H., Nandave M., Tonk R.K., Gaur S.S., Gautam R., Chibisov S. Pathophysiology and significance of troponin t, in heart failure, with reference to behavioral risk factors. World Heart J. 2020;12:15–22.
Takimoto E., Kass D.A. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49:241–248. doi: 10.1161/01.HYP.0000254415.31362.a7. PubMed DOI
Singh R.B., Elkilany G., Fedacko J., Hristova K., Palmiero P., Singh J., Manal M.A., Badran H.M. Evolution of the natural history of myocardial twist and diastolic dysfunction as cardiac dysfunction. In: Singh R.B., Fedacko J., Elkilany G., Hristova K., editors. Chronic Heart Failure, Pathophysiology and Management. Elsevier; Cambridge, MA, USA: 2023. in press .
Mirończuk-Chodakowska I., Witkowska A.M., Zujko M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018;63:68–78. doi: 10.1016/j.advms.2017.05.005. PubMed DOI
Laura D.C., Alla B., Ahmed E.S. Nutrigenetics and modulation of oxidative stress. Ann. Nutr. Metab. 2012;60((Suppl. S3)):27–36. doi: 10.1159/000337311. PubMed DOI
González R., Ballester I., López-Posadas R., Suárez M.D., Zarzuelo A., Martínez-Augustin O., Sánchez de Medina F. Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 2011;51:331–362. doi: 10.1080/10408390903584094. PubMed DOI
Singh R.B., Fedacko J., Elkilany G., Hristova K., Palmiero P., Pella D., Cornelissen G., Isaza A., Pella D. 2020 Guidelines on Pre-Heart Failure in the Light of 2D and 3D Speckle Tracking Echocardiography. A Scientific Statement of the International College of Cardiology. World Heart J. 2020;12:50–70.
Mann D.L., Bristow M.R. Mechanisms and models in heart failure: The biomechanical model and beyond. Circulation. 2005;111:2837–2849. doi: 10.1161/CIRCULATIONAHA.104.500546. PubMed DOI
Halabi A., Yang H., Wright L., Potter E., Huynh Q., Negishi K., Marwick T.H. Evolution of myocardial dysfunction in asymptomatic patients at risk of heart failure. JACC Cardiovasc. Imaging. 2021;14:350–361. doi: 10.1016/j.jcmg.2020.09.032. PubMed DOI
Lower R. Tractatus de Corde. Oxford University Press; London, UK: 1669.
Sengupta P.P., Tajik A.J., Chandrasekaran K., Khandheria B.K. Twist mechanics of the left ventricle: Principles and application. JACC Cardiovasc. Imaging. 2008;1:366–376. doi: 10.1016/j.jcmg.2008.02.006. PubMed DOI
Nakatani S. Left ventricular rotation and twist: Why should we learn? J. Cardiovasc. Ultrasound. 2011;19:1–6. doi: 10.4250/jcu.2011.19.1.1. PubMed DOI PMC
Saha S.K., Kiotsekoglou A., Nanda N.C. Echocardiography 2020: Toward deciphering the “Rosetta stone” of left ventricular diastolic function. Echocardiography. 2020;37:1886–1889. doi: 10.1111/echo.14830. PubMed DOI
Khouri M.G., Peshock R.M., Ayers C.R., de Lemos J.A., Drazner M.H. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: The Dallas heart study. Circ. Cardiovasc. Imaging. 2010;3:164–171. doi: 10.1161/CIRCIMAGING.109.883652. PubMed DOI
Lacalzada J., de la Rosa A., Izquierdo M.M., Jiménez J.J., Iribarren J.L., García-González M.J., López B.M., Duque M.A., Barragán A., Hernández C., et al. Left ventricular global longitudinal systolic strain predicts adverse remodeling and subsequent cardiac events in patients with acute myocardial infarction treated with primary percutaneous coronary intervention. Int. J. Cardiovasc. Imaging. 2015;31:575–584. doi: 10.1007/s10554-015-0593-2. PubMed DOI
Hristova K., Singh R.B., Fedacko J., Toda E., Kumar A., Saxena M., Baby A., Takahashi T., De Meester F., Wilson D.W. Causes and risk factors of congestive heart failure in India. World Heart J. 2013;5:13–20.
Fedacko J., Singh R.B., Gupta A., Hristova K., Toda E., Kumar A., Saxena M., Baby A., Singh R., Takahashi T., et al. Inflammatory mediators in chronic heart failure in North India. Acta Cardiol. 2014;69:391–984. doi: 10.1080/AC.69.4.3036655. PubMed DOI
Simmonds S.J., Cuijpers I., Heymans S., Jones E.A.V. Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells. 2020;9:242. doi: 10.3390/cells9010242. PubMed DOI PMC
Elkilany G., Singh R.B., Hristova K., Milovanovic B., Chaves H., Wilson D.W., Saboo B., Mahashwari A. Beyond drug therapy, nutritional perspectives in the management of chronic heart failure. World Heart J. 2015;7:83–88.
Singh R.B., Fedacko Mojto V., Pella D. Coenzyme Q10 modulates remodeling possibly by decreasing angiotensin-converting enzyme in patients with acute coronary syndrome. Antioxidants. 2018;7:99. doi: 10.3390/antiox7080099. PubMed DOI PMC
Fedacko J., Singh R.B., Niaz M.A., Bharadwaj K., Verma N., Gupta A.K., Singh R.B. Association of coronary protective factors among patients with acute coronary syndromes. J. Cardiol. Ther. 2016;4:671–677. doi: 10.17554/j.issn.2309-6861.2017.04.133. DOI
Singh R.B., Cornelissen G., Takahashi T., Shastun S., Hristova K., Chibisov S., Keim M., Abramova M., Otsuka K., Saboo B., et al. Brain-heart interactions and circadian rhythms in chronic heart failure. World Heart J. 2015;7:129–142.
Singh R.B., Hristova K., Fedacko J., El-Kilany G., Cornelissen G. Chronic heart failure: A disease of the brain. Heart Fail. Rev. 2018;24:301–307. doi: 10.1007/s10741-018-9747-3. PubMed DOI
Singh R.B., Wilczynska Fedacko J., Takahashi T., Niaz M.A., Jain SFatima G., Manal M.A., Abla M.A.S. Association of Indo-Mediterranean neuroprotective dietary (MIND) pattern with memory impairment and dementia, in an urban population of north India. Int. J. Clin. Nutr. 2021;21:11–20.
Wilczynska A., Fedacko J., Hristova K., Alkilany G., Fatima G., Tyagi G., Mojto V., Suchday S. Association of dietary pattern and depression with risk of cardiovascular diseases. Int. J. Clin. Nutr. 2017;17:1–10.
Singh R.B., Gvozdjakova A., Singh J., Shastun S., Dhalla N.S., Pella D., Fedacko J., Cornelissen G. Omega-3 PUFA, Omega-6 PUFA and mitochondrial dysfunction in relation to remodelling. In: Gvozdjakova A., Cornelissen G., Singh R.B., editors. Recent Advances in Mitochondrial Medicine and Coenzyme Q10. Nova Science Publishers; Hauppauge, NY, USA: 2018. pp. 353–368. Chapter 23.
Nettleton J.A., Steffen L.M., Loehr L.R., Rosamond W.D., Folsom A.R. Incident heart failure is associated with lower whole-grain intake and greater high-fat dairy and egg intake in the Atherosclerosis Risk in Communities (ARIC) study. J. Am. Diet. Assoc. 2008;108:1881–1887. doi: 10.1016/j.jada.2008.08.015. PubMed DOI PMC
Ashaye A., Gaziano J., Djoussé L. Red meat consumption and risk of heart failure in male physicians. Nutr. Metab. Cardiovasc. Dis. 2011;21:941–946. doi: 10.1016/j.numecd.2010.03.009. PubMed DOI PMC
Kaluza J., Åkesson A., Wolk A. Long-term processed and unprocessed red meat consumption and risk of heart failure: A prospective cohort study of women. Int. J. Cardiol. 2015;193:42–46. doi: 10.1016/j.ijcard.2015.05.044. PubMed DOI
Kaluza J., Akesson A., Wolk A. Processed and unprocessed red meat consumption and risk of heart failure: Prospective study of men. Circ. Heart Fail. 2014;7:552–557. doi: 10.1161/CIRCHEARTFAILURE.113.000921. PubMed DOI
Levitan E.B., Mittleman M.A., Wolk A. Dietary glycemic index, dietary glycemic load, and incidence of heart failure events: A prospective study of middle-aged and elderly women. J. Am. Coll. Nutr. 2010;29:65–71. doi: 10.1080/07315724.2010.10719818. PubMed DOI PMC
Ng S.F., Lin R.C., Laybutt D.R., Barres R., Owens J.A., Morris M.J. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010;467:963–966. doi: 10.1038/nature09491. PubMed DOI
Schiattarella G.G., Altamirano F., Tong D., French K.M., Villalobos E., Kim S.Y., Luo X., Jiang N., May H.I., Wang Z.V., et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568:351–356. doi: 10.1038/s41586-019-1100-z. PubMed DOI PMC
Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., DuGar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.-M. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. PubMed DOI PMC
Suzuki T., Heaney L.M., Bhandari S.S., Jones D.J.L., Ng L.L. Trimethylamine N-oxide and prognosis in acute heart failure. Heart. 2016;102:841–848. doi: 10.1136/heartjnl-2015-308826. PubMed DOI
Dambrova M., Latkovskis G., Kuka J., Strele I., Konrade I., Grinberga S., Hartmane D., Pugovics O., Erglis A., Liepinsh E. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp. Clin. Endocrinol. Diabetes. 2016;124:251–256. doi: 10.1055/s-0035-1569330. PubMed DOI
Papandreou C., Moré M., Bellamine A. Trimethylamine N-Oxide in relation to cardiometabolic health—Cause or effect? Nutrients. 2020;12:1330. doi: 10.3390/nu12051330. PubMed DOI PMC
O’Shea K.M., Khairallah R.J., Sparagna G.C., Xu W., Hecker P.A., Robillard-Frayne I., Des Rosiers C., Kristian T., Murphy R.C., Fiskum G., et al. Dietary omega-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition. J. Mol. Cell. Cardiol. 2009;47:819–827. doi: 10.1016/j.yjmcc.2009.08.014. PubMed DOI PMC
Miatello R., Vazquez M., Renna N., Cruzado M., Zumino A.P., Risler N. Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats. Am. J. Hypertens. 2005;18:864–870. doi: 10.1016/j.amjhyper.2004.12.012. PubMed DOI
Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a. PubMed DOI
Lemon S.C., Olendzki B., Magner R., Li W., Culver A.L., Ockene I., Goldberg R.J. The dietary quality of persons with heart failure in NHANES 1999–2006. J. Gen. Intern. Med. 2010;25:135–140. doi: 10.1007/s11606-009-1139-x. PubMed DOI PMC
Rahman I., Wolk A., Latsson S.C. The relationship between sweetened beverages consumption and risk of heart failure in men. Heart. 2015;101:1961–1965. doi: 10.1136/heartjnl-2015-307542. PubMed DOI
Stanley W.C., Dabkowski E.R., Ribeiro R.F., Jr., O’Connell K.A. Dietary fat and heart failure: Moving from lipotoxicity to lipoprotection. Circ. Res. 2012;110:764–776. doi: 10.1161/CIRCRESAHA.111.253104. PubMed DOI PMC
Tikellis C., Thomas M.C., Harcourt B.E., Coughlan M.T., Pete J., Bialkowski K., Tan A., Bierhaus A., Cooper M.E., Forbes J.M. Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am. J. Physiol. Endocrinol. Metab. 2008;295:E323–E330. doi: 10.1152/ajpendo.00024.2008. PubMed DOI PMC
Butler T.J., Ashford D., Seymour A.M. Western diet increases cardiac ceramide content in healthy and hypertrophied hearts. Nutr. Metab. Cardiovas. Dis. 2017;27:991–998. doi: 10.1016/j.numecd.2017.08.007. PubMed DOI
Lopaschuk G.D., Folmes C.D., Stanley W.C. Cardiac energy metabolism in obesity. Circ. Res. 2007;101:335–347. doi: 10.1161/CIRCRESAHA.107.150417. PubMed DOI
Levitan E.B., Wolk A., Mittleman M.A. Relation of consistency with the dietary approaches to stop hypertension diet and incidence of heart failure in men aged 45 to 79 years. Am. J. Cardiol. 2009;104:1416–1420. doi: 10.1016/j.amjcard.2009.06.061. PubMed DOI PMC
Levitan E.B., Wolk A., Mittleman M.A. Consistency with the DASH diet and incidence of heart failure. Arch. Intern. Med. 2009;169:851–857. doi: 10.1001/archinternmed.2009.56. PubMed DOI PMC
Hall J.E., da Silva A.A., do Carmo J.M., Dubinion J., Hamza S., Munusamy S., Smith G., Stec D.E. Obesity-induced hypertension: Role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 2010;285:17271–17276. doi: 10.1074/jbc.R110.113175. PubMed DOI PMC
Okere I.C., Chandler M.P., McElfresh T.A., Rennison J.H., Sharov V., Sabbah H.N., Tserng K.Y., Hoit B.D., Ernsberger P., Young M.E., et al. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H38–H44. doi: 10.1152/ajpheart.01295.2005. PubMed DOI
Fitzgerald S.M., Henegar J.R., Brands M.W., Henegar L.K., Hall J.E. Cardiovascular and renal responses to a high-fat diet in Osborne-Mendel rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001;281:R547–R552. doi: 10.1152/ajpregu.2001.281.2.R547. PubMed DOI
Pladevall M., Williams K., Guyer H., Sadurni J., Falces C., Ribes A., Pare C., Brotons C., Gabriel R., Serrano-Rios M., et al. The association between leptin and left ventricular hypertrophy: A population-based cross-sectional study. J. Hypertens. 2003;21:1467–1473. doi: 10.1097/00004872-200308000-00009. PubMed DOI
Schaffer J.E. Lipotoxicity: When tissues overeat. Curr. Opin. Lipidol. 2003;14:281–287. doi: 10.1097/00041433-200306000-00008. PubMed DOI
Lennie T.A., Andreae C., Rayens M.K., Song E.K., Dunbar S.B., Pressler S.J., Heo S., Kim J., Moser D.K. Micronutrient Deficiency Independently Predicts Time to Event in Patients with Heart Failure. J. Am. Heart Assoc. 2018;7:e007251. doi: 10.1161/JAHA.117.007251. PubMed DOI PMC
Song E.K., Kang S.M. Micronutrient deficiency independently predicts adverse health outcomes in patients with heart failure. J. Cardiovasc. Nurs. 2017;32:47–53. doi: 10.1097/JCN.0000000000000304. PubMed DOI
Arcand J., Floras V., Ahmed M., Al-Hesayen A., Ivanov J., Allard J.P., Newton G.E. Nutritional inadequacies in patients with stable heart failure. J. Am. Diet. Assoc. 2009;109:1909–1913. doi: 10.1016/j.jada.2009.08.011. PubMed DOI
Colin-Ramirez E., Castillo-Martinez L., Orea-Tejeda A., Zheng Y., Westerhout C.M., Ezekowitz J.A. Dietary fatty acids intake and mortality in patients with heart failure. Nutrition. 2014;30:1366–1371. doi: 10.1016/j.nut.2014.04.006. PubMed DOI
Abshire M., Xu J., Baptiste D., Almansa J.R., Xu J., Cummings A., Andrews M.J., Dennison Himmelfarb C. Nutritional interventions in heart failure: A systematic review of the literature. J. Card. Fail. 2015;21:989–999. doi: 10.1016/j.cardfail.2015.10.004. PubMed DOI PMC
Djoussé L., Petrone A.B., Gaziano J.M. Consumption of fried foods and risk of heart failure in the physicians’ health study. J. Am. Heart Assoc. 2015;4:e001740. doi: 10.1161/JAHA.114.001740. PubMed DOI PMC
Lara K.M., Levitan E.B., Gutierrez O.M., Shikany J.M., Safford M.M., Judd S.E., Rosenson R.S. Dietary patterns and incident heart failure in US adults without known coronary disease. J. Am. Coll. Cardiol. 2019;73:2036–2045. doi: 10.1016/j.jacc.2019.01.067. PubMed DOI PMC
Virtanen H.E.K., Voutilainen S., Kosiken T.L., Mursu T.P., Toumainen T.P., Virtanen J.K. Intake of different dietary proteins and risk of heart failure in men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Circ. Heart Fail. 2018;11:e004531. doi: 10.1161/CIRCHEARTFAILURE.117.004531. PubMed DOI PMC
Godos J., Micek A., Brzostek T., Toledo E., Iacoviello L., Astrup A., Franco O.H., Galvano F., Martinez-Gonzalez M.A., Grosso G. Egg consumption and cardiovascular risk: A dose–response meta-analysis of prospective cohort studies. Eur. J. Nutr. 2020;60:1833–1862. doi: 10.1007/s00394-020-02345-7. PubMed DOI PMC
Nwozo S.O., Orojobi F., Adaramoye O.A. Hypolipidemic and antioxidant potentials of Xylopia aethiopica seed extract in hypercholesterolaemic rats. J. Med. Foods. 2011;14:114–119. doi: 10.1089/jmf.2008.0168. PubMed DOI
Nwozo S.O., Lewis Y.T., Oyinloye B.E. The effects of Piper guineese versus Sesamum indicum aqueous extracts on lipid metabolism and antioxidants in hypercholesterolemic rats. Iran. J. Med. Sci. (IJMS) 2017;42:449–456. PubMed PMC
Singh R.B., Rastogi S.S., Verma R., Laxmi B., Singh Reema Ghosh S., Niaz M.A. Randomized, controlled trial of cardioprotective diet in patients with recent acute myocardial infarction: Results of one year follow up. BMJ. 2002;304:1115–1119. PubMed PMC
Singh R.B., Dubnov G., Niaz M.A., Ghosh S., Singh R., Rastogi S.S., Manor O., Pella D., Berry E.M. Effect of an Indo-Mediterranean diet on progression of coronary disease in high risk patients: A randomized single blind trial. Lancet. 2002;360:1455–1461. doi: 10.1016/S0140-6736(02)11472-3. PubMed DOI
Papandreou C., Hernández-Alonso P., Bulló M., Ruiz-Canela M., Li J., Guasch-Ferré M., Toledo E., Clish C., Corella D., Estruch R., et al. High plasma glutamate and a low glutamine-to-glutamate ratio are associated with increased risk of heart failure but not atrial fibrillation in the Prevención con Dieta Mediterránea (PREDIMED) Study. J. Nutr. 2020;150:2882–2889. doi: 10.1093/jn/nxaa273. PubMed DOI PMC
Wirth J., di Giuseppe R., Boeing H., Weikert C. A Mediterranean-style diet, its components and the risk of heart failure: A prospective population-based study in a non-Mediterranean country. Eur. J. Clin. Nutr. 2016;70:1015–1021. doi: 10.1038/ejcn.2016.140. PubMed DOI
Djoussé L., Akinkuolie A.O., Wu J.H., Ding E.L., Gaziano J.M. Fish consumption, omega-3 fatty acids and risk of heart failure: A meta-analysis. Clin. Nutr. 2012;31:846–853. doi: 10.1016/j.clnu.2012.05.010. PubMed DOI PMC
Djoussé L., Gaziano J.M. Breakfast cereals and risk of heart failure in the Physicians’ Health Study I. Arch. Intern. Med. 2007;167:2080–2085. doi: 10.1001/archinte.167.19.2080. PubMed DOI
Mozaffarian D., Lemaitre R.N., King I.B., Song X., Spiegelman D., Sacks F.M., Rimm E.B., Siscovick D.S. Circulating long-chain omega-3 fatty acids and incidence of congestive heart failure in older adults: The Cardiovascular Health Study. Ann. Intern. Med. 2011;155:160–170. doi: 10.7326/0003-4819-155-3-201108020-00006. PubMed DOI PMC
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC
Nadal-Ginard B., Kajstura J., Leri A., Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ. Res. 2003;92:139–150. doi: 10.1161/01.RES.0000053618.86362.DF. PubMed DOI
Abel E.D., Doenst T. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc. Res. 2011;90:234–242. doi: 10.1093/cvr/cvr015. PubMed DOI PMC
Paulus W.J. Unfolding discoveries in heart failure. N. Engl. J. Med. 2020;382:679–682. doi: 10.1056/NEJMcibr1913825. PubMed DOI
Amgalan D., Kitsis R.N. A mouse model for the most common form of heart failure. Nature. 2019;568:324–325. doi: 10.1038/d41586-019-00983-4. PubMed DOI PMC
Bogiatzi C., Gloor G., Allen-Vercoe E., Reid G., Wong R.G., Urquhart B.L., Dinculescu V., Ruetz K.N., Velenosi T.J., Pignanelli M., et al. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis. 2018;273:91–97. doi: 10.1016/j.atherosclerosis.2018.04.015. PubMed DOI
Spence J.D., Srichaikul K.K., Jenkins D.J.A. Cardiovascular Harm from Egg Yolk and Meat: More Than Just Cholesterol and Saturated Fat. J. Am. Heart Assoc. 2021;10:e017066. doi: 10.1161/JAHA.120.017066. PubMed DOI PMC
Magomedova A.G. Characteristics of nutrition and health of pupils in the regions of Russia. Munic. Educ. Innov. Exp. 2021;3:56–64. doi: 10.51904/2306-8329_2021_78_3_56. DOI
Wang W., Kang P.M. Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants. 2020;9:1292. doi: 10.3390/antiox9121292. PubMed DOI PMC