Matrix Tablets Based on Chitosan-Carrageenan Polyelectrolyte Complex: Unique Matrices for Drug Targeting in the Intestine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS 2022 007
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36015128
PubMed Central
PMC9412913
DOI
10.3390/ph15080980
PII: ph15080980
Knihovny.cz E-zdroje
- Klíčová slova
- carrageenan, chitosan, drug targeting, polyelectrolyte complex,
- Publikační typ
- časopisecké články MeSH
The present study focused on the more detailed characterization of chitosan-carrageenan-based matrix tablets with respect to their potential utilization for drug targeting in the intestine. The study systematically dealt with the particular stages of the dissolution process, as well as with different views of the physico-chemical processes involved in these stages. The initial swelling of the tablets in the acidic medium based on the combined microscopy-calorimetry point of view, the pH-induced differences in the erosion and swelling of the tested tablets, and the morphological characterization of the tablets are discussed. The dissolution kinetics correlated with the rheological properties and mucoadhesive behavior of the tablets are also reported, and, correspondingly, the formulations with suitable properties were identified. It was confirmed that the formation of the chitosan-carrageenan polyelectrolyte complex may be an elegant and beneficial alternative solution for the drug targeting to the intestine by the matrix tablet.
Zobrazit více v PubMed
Rinaudo M. Chitin and chitosan—Properties and applications. Cheminform. 2007;31:603–632. doi: 10.1002/chin.200727270. DOI
Duttagupta D.S., Jadhav V.M., Kadam V.J. Chitosan: A propitious biopolymer for drug delivery. Curr. Drug. Deliv. 2015;12:369–381. doi: 10.2174/1567201812666150310151657. PubMed DOI
Hejazi R., Amiji M. Chitosan-based gastrointestinal delivery systems. J. Control. Release. 2003;89:151–165. doi: 10.1016/S0168-3659(03)00126-3. PubMed DOI
Kumar M.N., Muzzarelli R.A., Muzzarelli C., Sashiwa H., Domb A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004;104:6017–6084. doi: 10.1021/cr030441b. PubMed DOI
Sun X., Liu C., Omer A.M., Yang L.-Y., Ouyang X. Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int. J. Biol. Macromol. 2019;132:487–494. doi: 10.1016/j.ijbiomac.2019.03.225. PubMed DOI
Liu J., Zhan X., Wan J., Wang Y., Wang C. Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects. Carbohydr. Polym. 2015;121:27–36. doi: 10.1016/j.carbpol.2014.11.063. PubMed DOI
Picker-Freyer K.M. Carrageenans in solid dosage form design. In: Augsburger L.L., Hoag S.W., editors. Pharmaceutical Dosage Forms: Tablets. Volume 2. Informa Heallthcare USA, Inc.; New York, NY, USA: 2008. pp. 469–492.
Pavli M., Baumgartner S., Kos P., Kogej K. Doxazosin-carrageenan interactions: A novel approach for studying drug-polymer interactions and relation to controlled drug release. Int. J. Pharm. 2011;421:110–119. doi: 10.1016/j.ijpharm.2011.09.019. PubMed DOI
Bixler H.J. The carrageenan connection IV. Br. Food J. 1994;96:12–17. doi: 10.1108/00070709410060763. DOI
Necas J., Bartosikova L. Carrageenan: A review. Vet. Med. 2013;58:187–205. doi: 10.17221/6758-VETMED. DOI
Li L., Wang L., Li J., Jiang J., Wang Y., Zhang X., Ding J., Yu T., Mao S. Insights into the mechanisms of chitosan–anionic polymers-based matrix tablets for extended drug release. Int. J. Pharm. 2014;476:253–265. doi: 10.1016/j.ijpharm.2014.09.057. PubMed DOI
Martinsa A.F., Vlcek J., Wigmosta T., Hedayatic M., Reynolds M.M., Popat K.C., Kipper M.J. Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer scaffolds with antiadhesive and bactericidal properties. Appl. Surf. Sci. 2020;502:144282. doi: 10.1016/j.apsusc.2019.144282. DOI
Shchipunov Y.A. Structure of Polyelectrolyte Complexes by the Example of Chitosan Hydrogels with lambda-carrageenan. Polym. Sci. Ser. A. 2020;62:54–61. doi: 10.1134/S0965545X20010101. DOI
Abdelbary G.A., Tadros M.I. Design and in vitro/in vivo evaluation of novel nicorandil extended release matrix tablets based on hydrophilic interpolymer complexes and a hydrophobic waxy polymer. Eur. J. Pharm. Biopharm. 2008;69:1019–1028. doi: 10.1016/j.ejpb.2008.01.011. PubMed DOI
Tapia C., Corbalán V., Costa E., Gai M.N., Yazdani-Pedram M. Study of the Release Mechanism of Diltiazem Hydrochloride from Matrices Based on Chitosan-Alginate and Chitosan-Carrageenan Mixtures. Biomacromolecules. 2005;6:2389–2395. doi: 10.1021/bm050227s. PubMed DOI
Tapia C., Escobar Z., Costa E., Sapag-Hagar J., Valenzuela F., Basualto C., Gai M.N., Yazdani-Pedram M. Comparative studies on polyelectrolyte complexes and mixtures of chitosan–alginate and chitosan–carrageenan as prolonged diltiazem chlorhydrate release systems. Eur. J. Pharm. Biopharm. 2004;57:65–75. doi: 10.1016/S0939-6411(03)00153-X. PubMed DOI
Shao Y., Li L., Gu X., Wang L., Mao S. Evaluation of chitosaneanionic polymers based tablets for extended-release of highly watersoluble drugs. Asian J. Pharm. Sci. 2015;10:24–30. doi: 10.1016/j.ajps.2014.08.002. DOI
Kos P., Pavli M., Baumgartner S., Kogej K. Release mechanism of doxazosin from carrageenan matrix tablets: Effect of ionic strength and addition of sodium dodecyl sulphate. Int. J. Pharm. 2017;529:557–567. doi: 10.1016/j.ijpharm.2017.06.067. PubMed DOI
Kelemen A., Buchholcz G., Sovány T., Pintye-Hód K. Evaluation of the swelling behaviour of iota-carrageenan in monolithic matrix tablets. J. Pharm. Biomed. Anal. 2015;112:85–88. doi: 10.1016/j.jpba.2015.04.025. PubMed DOI
Yin X., Li L., Gu X., Wang H., Wu L., Qin W., Xiao T., York P., Zhang J., Mao S. Dynamic structure model of polyelectrolyte complex based controlled release matrix tablets visualized by synchrotron radiation micro-computed tomography. Mater. Sci. Eng. C. 2020;116:111137. doi: 10.1016/j.msec.2020.111137. PubMed DOI
Abd-El-Gawad A., Ramadan E., Soliman O., Yusif R. Formulation and in-vivo study of ketoprofen tablets prepared using chitosan interpolymer complexes. Bull. Pharm. Sci. 2012;35:1–16. doi: 10.21608/bfsa.2012.64124. DOI
Meng F., Zhou Y., Liu J.Y., Wu J., Wang G., Li R., Zhang Y. Thermal decomposition behaviors and kinetics of carrageenan-poly vinyl alcohol bio-composite film. Carbohydr. Polym. 2018;201:96–104. doi: 10.1016/j.carbpol.2018.07.095. PubMed DOI
Al-Nahdi M., Al-Alawi A., Al-Marhobi I. The Effect of Extraction Conditions on Chemical and Thermal Characteristics of Kappa-Carrageenan Extracted from Hypnea bryoides. J. Mar. Sci. 2019;2019:5183261. doi: 10.1155/2019/5183261. DOI
Ma S., Chen L., Liu X., Li D., Ye N., Wang L. Thermal Behavior of Carrageenan: Kinetic and Characteristic Studies. Int. J. Green Energy. 2012;9:13–21. doi: 10.1080/15435075.2011.617018. DOI
Mishra D.K., Tripathy J., Behari K. Synthesis of graft copolymer (κ-carrageenan-g-N,N-dimethylacrylamide) and studies of metal ion uptake, swelling capacity and flocculation properties. Carbohydr. Polym. 2008;71:524–534. doi: 10.1016/j.carbpol.2007.06.021. DOI
Freile-Pelegrin Y., Azamar J.A., Robledo D. Preliminary characterization of carrageenan from the red seaweed Halymenia floresii. J. Aquat. Food Prod. Technol. 2011;20:73–83. doi: 10.1080/10498850.2010.541590. DOI
Kaminska-Dworznicka A., Antczak A., Samborska K., Lenart A. Acid hydrolysis of kappa-carrageenan as a way of gaining new substances for freezing process modification and protection from excessive recrystallisation of ice. Int. J. Food Sci. Technol. 2015;50:1799–1806. doi: 10.1111/ijfs.12820. DOI
Meinita M.D.N., Marhaeni B., Jeong G.-T., Hong Y.-K. Sequential acid and enzymatic hydrolysis of carrageenan solid waste for bioethanol production: A biorefinery approach. J. Appl. Phycol. 2019;31:2507–2515. doi: 10.1007/s10811-019-1755-8. DOI
Singh S.K., Jacobsson S.P. Kinetics of acid hydrolysis of κ-carageenan as determined by molecular weight (SEC-MALLS-RI), gel breaking strength, and viscosity measurements. Carbohydr. Polym. 1994;23:89–103. doi: 10.1016/0144-8617(94)90032-9. DOI
Nasonova A., Cohen Y., Poverenov E., Borisover M. Binding interactions of salicylic acid with chitosan and its N-alkylated derivative in solutions: An equilibrium dialysis study. Colloids Surf. A. 2020;603:125202. doi: 10.1016/j.colsurfa.2020.125202. DOI
Langer R. New methods of drug delivery. Science. 1990;249:1527–1533. doi: 10.1126/science.2218494. PubMed DOI
Siepmann J., Siepmann F. Modeling of diffusion controlled drug delivery. J. Control. Release. 2012;161:351–362. doi: 10.1016/j.jconrel.2011.10.006. PubMed DOI
Maderuelo C., Zarzuelo A., Lanao J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release. 2011;154:2–19. doi: 10.1016/j.jconrel.2011.04.002. PubMed DOI
Ghafourian T., Safari A., Adibkia K., Parviz F., Nokhodchi A. A drug release study from hydroxypropylmethylcellulose (HPMC) matrices using QSPR modeling. J. Pharm. Sci. 2007;96:3334–3351. doi: 10.1002/jps.20990. PubMed DOI
Li L., Wang L., Shao Y., Ni R., Zhang T., Mao S. Drug release characteristics from chitosan-alginate matrix tablets based on the theory of self-assembled film. Int. J. Pharm. 2013;450:197–207. doi: 10.1016/j.ijpharm.2013.04.052. PubMed DOI
Aguzzi C., Bonferoni M.C., Fortich M.R.O., Rossi S., Ferrari F., Caramella C. Influence of complex solubility on formulations based on lambda carageenan and basic drugs. AAPS PhramSciTech. 2002;3:83–89. doi: 10.1208/pt030327. PubMed DOI PMC
Da Silva J.B., de Souza Ferreira S.B., Reis A.V., Cook M.T., Bruschi M.L. Assessing Mucoadhesion in Polymer Gels: The Effect of Method Type and Instrument Variables. Polymers. 2018;10:254. doi: 10.3390/polym10030254. PubMed DOI PMC
Baus R.A., Haug M.F., Leichner C., Jelkmann M., Bernkop-Schnürch A. In Vitro–In Vivo Correlation of Mucoadhesion Studies on Buccal Mucosa. Mol. Pharm. 2019;16:2719–2727. doi: 10.1021/acs.molpharmaceut.9b00254. PubMed DOI
Guerini M., Condrò G., Perugini P. Evaluation of the Mucoadhesive Properties of Chitosan-Based Microstructured Lipid Carrier (CH-MLC) Pharmaceutics. 2022;14:170. doi: 10.3390/pharmaceutics14010170. PubMed DOI PMC
Taniguchi K., Kakuta H. Bixalomer, a novel phosphate binder with a small swelling index, improves hyperphosphatemia in chronic kidney disease rat. Eur. J. Pharmacol. 2015;766:129–134. doi: 10.1016/j.ejphar.2015.10.001. PubMed DOI
Carbinatto F.M., De Castro A.D., Evangelista R.C., Cury B.S.F. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J. Pharm. Sci. 2014;9:27–34. doi: 10.1016/j.ajps.2013.12.002. DOI
Simancas-Herbada R., Fernández-Carballido A., Aparicio-Blanco J., Slowing K., Rubio-Retama J., Lopez-Cabarcos E., Torres-Suarez A.-I. Controlled Release of Highly Hydrophilic Drugs from Novel Poly (MagnesiumAcrylate) Matrix Tablets. Pharmaceutics. 2020;12:174. doi: 10.3390/pharmaceutics12020174. PubMed DOI PMC
Sokar M.S., Hanafy A.S., El-Kamel A.H., El-Gamal S.S. Pulsatile core-in-cup valsartan tablet formulations: In vitro evaluation. Asian J. Pharm. Sci. 2013;8:234–243. doi: 10.1016/j.ajps.2013.09.006. DOI
Skalická B., Matzick K., Komersová A., Svoboda R., Bartoš M., Hromádko L. 3D-Printed Coating of Extended-Release Matrix Tablets: Effective Tool for Prevention of Alcohol-Induced Dose Dumping Effect. Pharmaceutics. 2021;13:2123. doi: 10.3390/pharmaceutics13122123. PubMed DOI PMC
Lochař V., Komersová A., Matzick K., Skalická B., Bartoš M., Mužíková J., Haddouchi S. The effect of alcohol on ionizing and non-ionizing drug release from hydrophilic, lipophilic and dual matrix tablets. Saudi Pharm. J. 2020;28:187–195. doi: 10.1016/j.jsps.2019.11.020. PubMed DOI PMC
Wang Y., Xu P.P., Li X.X., Nie K., Tuo M.F., Kong B., Chen J. Monitoring the hydrolyzation of aspirin during the dissolution testing for aspirin delayed-release tablets with a fiber-optic dissolution system. J. Pharm. Anal. 2012;2:386–389. doi: 10.1016/j.jpha.2012.06.002. PubMed DOI PMC
Hosokawa S., Shukuya K., Sogabe K., Ejima Y., Morinishi T., Hirakawa E., Ohsaki H., Shimosawa T., Tokuhara Y. Novel absorbance peak of gentisic acid following the oxidation reaction. PLoS ONE. 2020;15:e0232263. doi: 10.1371/journal.pone.0232263. PubMed DOI PMC