Factors Affecting the Metabolic Conversion of Ciprofloxacin and Exposure to Its Main Active Metabolites in Critically Ill Patients: Population Pharmacokinetic Analysis of Desethylene Ciprofloxacin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Inter-Excellence (Action), under Grant LTAUSA-243018
Ministry of Education Youth and Sports
Cooperatio project (research area PHAR)
Charles University
SVV 260523
Charles University
A1_FPBT_2022_007
Specific University Research
PubMed
36015253
PubMed Central
PMC9413960
DOI
10.3390/pharmaceutics14081627
PII: pharmaceutics14081627
Knihovny.cz E-zdroje
- Klíčová slova
- desethylene ciprofloxacin, formyl ciprofloxacin, gene polymorphism, oxociprofloxacin, pharmacogenetics, population pharmacokinetics,
- Publikační typ
- časopisecké články MeSH
The objective of this prospective study was to examine the exposure to the main active metabolites of ciprofloxacin in critically ill patients and to examine the factors (demographic, laboratory and genetic) that could potentially affect the drug metabolic conversion of ciprofloxacin. The secondary aim was to develop a population pharmacokinetic model for the metabolite showing the most associations with the abovementioned factors. A total of 29 patients were treated with intravenous infusion of ciprofloxacin and enrolled on this trial. Blood samples for pharmacokinetic analysis were taken at 1, 4, and 11.5 h following the completion of the infusion. Sex, age, body weight, height, serum creatinine and bilirubin levels, and creatinine clearance (CLCR) were recorded, and polymorphisms rs2032582 and rs1045642 in the ABCB1 gene, rs4148977 in the SLCO1A2 gene and rs762551 in the CYP1A2 gene were analyzed. A three-stage parent drug-metabolite population pharmacokinetic model was developed. Median (IQR) metabolite/parent ratios of the desethylene ciprofloxacin, formyl ciprofloxacin and oxociprofloxacin were 5.86 (4.09-9.87)%, 4.08 (3.38-6.92)% and 5.91 (3.42-13.65)%, respectively. The desethylene ciprofloxacin metabolic ratio was positively associated with height (r2 = 0.2277, p = 0.0089) and CLCR (r2 = 0.2023, p = 0.0144) and negatively associated with age (r2 = 0.2227, p = 0.0112). Males had a significantly higher oxociprofloxacin metabolic ratio than females (9.14 vs 3.42%, p = 0.0043). In the desethylene ciprofloxacin population PK model, the volume of distribution decreased with age, the parent drug-metabolite transfer rate constant increased with CLCR, and the metabolite elimination rate constant decreased with age and is increased in CYP1A2 rs762551 variant allele carriers. We therefore hypothesized that the CYP1A2 inhibition by ciprofloxacin is mediated by its metabolite desethylene ciprofloxacin.
Zobrazit více v PubMed
Roberts J.A., Alobaid A.S., Wallis S.C., Perner A., Lipman J., Sjovall F. Defining optimal dosing of ciprofloxacin in patients with septic shock. J. Antimicrob. Chemother. 2019;74:1662–1669. doi: 10.1093/jac/dkz069. PubMed DOI
Abdulla A., Rogouti O., Hunfeld N.G.M., Endeman H., Dijkstra A., van Gelder T., Muller A.E., de Winter B.C.M., Koch B.C.P. Population pharmacokinetics and target attainment of ciprofloxacin in critically ill patients. Eur. J. Clin. Pharmacol. 2020;76:957–967. doi: 10.1007/s00228-020-02873-5. PubMed DOI PMC
Al-Omar M.A. Ciprofloxacin: Drug metabolism and pharmacokinetic profile. Profiles Drug Subst. Excip. Relat. Methodol. 2005;31:209–214. PubMed
Sharma P.C., Jain A., Jain S., Pahwa R., Yar M.S. Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. J. Enzyme Inhib. Med. Chem. 2010;25:577–589. doi: 10.3109/14756360903373350. PubMed DOI
Bergan T. Extravascular penetration of ciprofloxacin. A review. Diagn. Microbiol. Infect. Dis. 1990;13:103–114. doi: 10.1016/0732-8893(90)90093-B. PubMed DOI
Bergan T., Dalhoff A., Rohwedder R. Pharmacokinetics of ciprofloxacin. Infection. 1988;16((Suppl. S1)):S3–S13. doi: 10.1007/BF01650500. PubMed DOI
Vance-Bryan K., Guay D.R., Rotschafer J.C. Clinical pharmacokinetics of ciprofloxacin. Clin. Pharmacokinet. 1990;19:434–461. doi: 10.2165/00003088-199019060-00003. PubMed DOI
Zeiler H.J., Petersen U., Gau W., Ploschke H.J. Antibacterial activity of the metabolites of ciprofloxacin and its significance in the bioassay. Arzneimittelforschung. 1987;37:131–134. PubMed
Bolhuis M.S., Panday P.N., Pranger A.D., Kosterink J.G., Alffenaar J.W. Pharmacokinetic drug interactions of antimicrobial drugs: A systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams. Pharmaceutics. 2011;3:865–913. doi: 10.3390/pharmaceutics3040865. PubMed DOI PMC
Park M.S., Okochi H., Benet L.Z. Is Ciprofloxacin a Substrate of P-glycoprotein? Arch. Drug Inf. 2011;4:1–9. doi: 10.1111/j.1753-5174.2010.00032.x. PubMed DOI PMC
Xiao Y., Deng J., Liu X., Huang J., Sun Y., Dai R., Hong M. Different binding sites of bovine organic anion-transporting polypeptide1a2 are involved in the transport of different fluoroquinolones. Drug Metab. Dispos. 2014;42:1261–2617. doi: 10.1124/dmd.114.057448. PubMed DOI
Traynor J., Mactier R., Geddes C.C., Fox J.G. How to measure renal function in clinical practice. BMJ. 2006;333:733–737. doi: 10.1136/bmj.38975.390370.7C. PubMed DOI PMC
Sima M., Michalickova D., Rysanek P., Cihlarova P., Kuchar M., Lzicarova D., Berousek J., Hartinger J.M., Vymazal T., Slanar O. No Time Dependence of Ciprofloxacin Pharmacokinetics in Critically Ill Adults: Comparison of Individual and Population Analyses. Pharmaceutics. 2021;13:1156. doi: 10.3390/pharmaceutics13081156. PubMed DOI PMC
Pechandova K., Buzkova H., Slanar O., Perlik F. Polymorphisms of the MDR1 gene in the Czech population. Folia Biol. 2006;52:184–189. PubMed
Allard S., Kinzig M., Boivin G., Sorgel F., LeBel M. Intravenous ciprofloxacin disposition in obesity. Clin. Pharmacol. Ther. 1993;54:368–373. doi: 10.1038/clpt.1993.162. PubMed DOI
Frost R.W., Lettieri J.T., Krol G., Shamblen E.C., Lasseter K.C. The effect of cirrhosis on the steady-state pharmacokinetics of oral ciprofloxacin. Clin. Pharmacol. Ther. 1989;45:608–616. doi: 10.1038/clpt.1989.81. PubMed DOI
Bergan T., Thorsteinsson S.B., Rohwedder R., Scholl H. Elimination of ciprofloxacin and three major metabolites and consequences of reduced renal function. Chemotherapy. 1989;35:393–405. doi: 10.1159/000238702. PubMed DOI
Giannouchos T.V., Gomez-Lumbreras A., Malone D.C. Risk of tizanidine-induced adverse events after concomitant exposure to ciprofloxacin: A cohort study in the U.S. Am. J. Emerg. Med. 2022;55:147–151. doi: 10.1016/j.ajem.2022.03.008. PubMed DOI
Bachmann F., Meyer Zu Schwabedissen H.E., Duthaler U., Krahenbuhl S. Cytochrome P450 1A2 is the most important enzyme for hepatic metabolism of the metamizole metabolite 4-methylaminoantipyrine. Br. J. Clin. Pharmacol. 2022;88:1885–1896. doi: 10.1111/bcp.15108. PubMed DOI PMC
Brouwers E.E., Sohne M., Kuipers S., van Gorp E.C., Schellens J.H., Koks C.H., Beijnen J.H., Huitema A.D. Ciprofloxacin strongly inhibits clozapine metabolism: Two case reports. Clin. Drug Investig. 2009;29:59–63. doi: 10.2165/0044011-200929010-00006. PubMed DOI
Jokinen M.J., Olkkola K.T., Ahonen J., Neuvonen P.J. Effect of ciprofloxacin on the pharmacokinetics of ropivacaine. Eur. J. Clin. Pharmacol. 2003;58:653–657. doi: 10.1007/s00228-002-0540-8. PubMed DOI
Batty K.T., Davis T.M., Ilett K.F., Dusci L.J., Langton S.R. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br. J. Clin. Pharmacol. 1995;39:305–311. doi: 10.1111/j.1365-2125.1995.tb04453.x. PubMed DOI PMC
Healy D.P., Polk R.E., Kanawati L., Rock D.T., Mooney M.L. Interaction between oral ciprofloxacin and caffeine in normal volunteers. Antimicrob. Agents Chemother. 1989;33:474–478. doi: 10.1128/AAC.33.4.474. PubMed DOI PMC
Zhang L., Wei M.J., Zhao C.Y., Qi H.M. Determination of the inhibitory potential of 6 fluoroquinolones on CYP1A2 and CYP2C9 in human liver microsomes. Acta Pharmacol. Sin. 2008;29:1507–1514. doi: 10.1111/j.1745-7254.2008.00908.x. PubMed DOI