Flow Equations for Free-Flowable Particle Fractions of Sorbitol for Direct Compression: An Exploratory Multiple Regression Analysis of Particle and Orifice Size Influence
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 547
Charles University Grant Agency
PubMed
36015279
PubMed Central
PMC9414053
DOI
10.3390/pharmaceutics14081653
PII: pharmaceutics14081653
Knihovny.cz E-zdroje
- Klíčová slova
- flow equation, hopper, interaction term, mass flow rate, multilinear regression, orifice diameter, particle size, powders properties,
- Publikační typ
- časopisecké články MeSH
Flowability is among the most important properties of powders, especially when fine particle size fractions need to be processed. In this study, our goal was to find a possibly simple but accurate mathematical model for predicting the mass flow rate for different fractions of the pharmaceutical excipient sorbitol for direct compression. Various regression models derived from the Jones-Pilpel equation for the prediction of the mass flow rate were investigated. Using validation with experimental data for various particle and hopper orifice sizes, we focused on the prediction accuracy of the respective models, i.e., on the relative difference between measured and model-predicted values. Classical indicators of regression quality from statistics were addressed as well, but we consider high prediction accuracy to be particularly important for industrial processing in practice. For individual particle size fractions, the best results (an average prediction accuracy of 3.8%) were obtained using simple regression on orifice size. However, for higher accuracy (3.1%) in a unifying model, valid in the broad particle size range 0.100-0.346 mm, a fully quadratic model, incorporating interaction between particle and orifice size, appears to be most appropriate.
Zobrazit více v PubMed
McGlinchey D. Characterisation of Bulk Solids. John Wiley & Sons; Hoboken, NJ, USA: Blackwell Publishing Ltd.; London, UK: 2009. p. 50.
Mort P. Characterizing flowability of granular materials by onset of jamming in orifice flow. Pap. Phys. 2015;7:070004. doi: 10.4279/pip.070004. DOI
Tay J.Y.S., Liew C.V., Heng P.W.S. Powder Flow Testing: Judicious Choice of Test Methods. AAPS PharmSciTech. 2017;18:1843–1854. doi: 10.1208/s12249-016-0655-3. PubMed DOI
Tan G., Morton D.A., Larson I. On the Methods to Measure Powder Flow. Curr. Pharm Des. 2015;21:5751–5765. doi: 10.2174/1381612821666151008125852. PubMed DOI
Barletta D., Donsì G., Ferrari G., Poletto M. On the role and the origin of the gas pressure gradient in the discharge of fine solids from hoppers. Chem. Eng. Sci. 2003;58:5269–5278. doi: 10.1016/j.ces.2003.08.022. DOI
Carson J.W., Pittenger B.H. In: Bulk Properties of Powders. Lee P.V., Trudel Y., Iacocca R., German R.M., Ferguon B.L., Eisen W.B., Moyer K., Madan D., Sanderow H., editors. Volume 7. ASM International; Novelty, OH, USA: 1998. pp. 287–301.
Shrikant D., Jacob K., Madhusudhan K. Determining discharge rates of particulate solids. Chem. Eng. Prog. 2016;112:50–61.
Xie X., Puri V.M. Uniformity of powder die filling using a feed shoe: A review. Part. Sci. Technol. 2006;24:411–426. doi: 10.1080/02726350600934663. DOI
Beverloo W.A., Leniger J. The flow of granular solids through orifices. Chem. Eng. Sci. 1961;15:260–269. doi: 10.1016/0009-2509(61)85030-6. DOI
Prescott J.K., Barnum R.A. On powder flowability. Pharm. Technol. 2000;24:60–84.
Schulze D. Powders, and Bulk Solids: Behavior, Characterization, Storage, and Flow. Springer; Berlin/Heidelberg, Germany: New York, NY, USA: 2008. p. 517. DOI
Seville J.P.K., Tuzun U., Clift R. Storage, and discharge of particulate bulk solids. In: Seville J.P.K., Tuzun U., Clift R., editors. Processing of Particulate Solids. Blackie Academic & Professional; London, UK: 1997. pp. 298–367. DOI
Šklubalová Z., Hurychová H. The effect of the size of a conical hopper aperture on the parameters of the flow equation of sorbitol and its size fractions. Ceska. Slov. Farm. 2015;64:8–14. PubMed
Hurychová H., Kuentz M., Šklubalová Z. Fractal Aspects of Static and Dynamic Flow Properties of Pharmaceutical Excipients. J. Pharm. Innov. 2018;13:15–26. doi: 10.1007/s12247-017-9302-0. DOI
Trpělková Ž., Hurychová H., Kuentz M., Vraníková B., Šklubalová Z. Introduction of the energy to break an avalanche as a promising parameter for powder flowability prediction. Powder Technol. 2020;375:33–41. doi: 10.1016/j.powtec.2020.07.095. DOI
Brown R.L., Richards J.C. Profile of flow of granules through apertures. Trans. Inst. Chem. Eng. 1960;38:243.
Jones T.M., Pilpel N. The flow properties of granular magnesia. J. Pharm. Pharmacol. 1966;18:429–442. doi: 10.1111/j.2042-7158.1966.tb07903.x. PubMed DOI
Kachrimanis K., Petrides M., Malamataris S. Flow rate of some pharmaceutical diluents through die-orifices relevant to mini-tableting. Int. J. Pharm. 2005;303:72–80. doi: 10.1016/j.ijpharm.2005.07.003. PubMed DOI
Mankoc C., Janda A., Arévalo R., Pastor J.M., Zuriguel I., Garcimartín A., Maza D. The flow rate of granular materials through an orifice. Granul. Matter. 2007;9:407–414. doi: 10.1007/s10035-007-0062-2. DOI
Pasha M., Hekiem N.L., Jia X., Ghadiri M. Prediction of flowability of cohesive powder mixtures at high strain rate conditions by discrete element method. Powder Technol. 2020;372:59–67. doi: 10.1016/j.powtec.2020.05.110. DOI
Guo C., Ya M., Xu Y., Zheng J. Comparison on discharge characteristics of conical and hyperbolic hoppers based on finite element method. Powder Technol. 2021;394:300–311. doi: 10.1016/j.powtec.2021.08.064. DOI
Fu X., Huck D., Makein L., Armstrong B., Willen U., Freeman T. Effect of particle shape and size on flow properties of lactose powders. Particuology. 2012;10:203–208. doi: 10.1016/j.partic.2011.11.003. DOI
Ganesan V., Rosentrater K.A., Muthukumarappan K. Flowability and handling characteristics of bulk solids and powders—A review with implications for DDGS. Biosyst. Eng. 2008;101:425–435. doi: 10.1016/j.biosystemseng.2008.09.008. DOI
Hou H., Sun C.H.C. Quantifying effects of particulate properties on powder flow properties using a ring shear tester. J. Pharm. Sci. 2008;97:4030–4039. doi: 10.1002/jps.21288. PubMed DOI
Smith J.C., Hattiangadi U.S. Profiling solids flow from bins. Chem. Eng. Commun. 1980;6:105–115. doi: 10.1080/00986448008912523. DOI
Nedderman R.M., Laohakul C. The thickness of shear zone of flowing granular media. Powder Technol. 1980;25:91–100. doi: 10.1016/0032-5910(80)87014-8. DOI
Crewdson B.J., Ormond A.L., Nedderman R.M. Powder Technol. Volume 16. Elsevier; Amsterdam, The Netherlands: 1997. Air-Impeded Discharge of Fine Particles from a Hopper; pp. 197–207. DOI
Kumar R., Gopireddy S.R., Jana A.K., Patel C.M. Study of the discharge behavior of Rosin-Rammler particle-size distributions from hopper by discrete element method: A systematic analysis of mass flow rate, segregation, and velocity profiles. Powder Technol. 2020;360:818–834. doi: 10.1016/j.powtec.2019.09.044. DOI
Gibson M. Pharmaceutical Preformulation and Formulation: A Practical Guide from Candidate Drug Selection to Commercial Dosage Form. 2nd ed. CRC Press; Boca Raton, FL, USA: 2009.
Pitkin C.G., Mitra A.K., Pitkin C.G., Jr. Flowmeter for pharmaceutical powders. Communication. 1973;62:693. doi: 10.1002/jps.2600620438. PubMed DOI
Gundogdu M.Y. Discharge characteristics of polydisperse powders through conical hoppers. Part. Sci. Technol. 2004;22:339–353. doi: 10.1080/02726350490501565. DOI
Hsiau S.-S., Hsu C., Šmíd J. The discharge of fine silica sands in a silo. Phys. Fluids. 2010;22:043306. doi: 10.1063/1.3394013. DOI
Hsiau S.-S., Liao C.-C., Lee J.-H. The discharge of fine silica sand in a silo under different ambient air pressures. Phys. Fluids. 2012;24:043301. doi: 10.1063/1.3700979. DOI
Juliano P., Barbosa-Cánovas G.V. Food powders flowability characterization: Theory, methods, and applications. Annu. Rev. Food Sci. Technol. 2010;1:211–239. doi: 10.1146/annurev.food.102308.124155. PubMed DOI
Zatloukal Z., Šklubalová Z. The effect of orifice geometry on particle discharge rate for a flat-bottomed, cylindrical hopper. Part. Sci. Technol. 2012;30:316–328. doi: 10.1080/02726351.2011.573839. DOI
Aleksiev A., Kostova B., Rachev D. Development and Optimization of the Reservoir-type Oral Multiparticulate Drug Delivery Systems of Galantamine Hydrobromide. Ind. J. Pharm. Sci. 2016;78:368–376. doi: 10.4172/pharmaceutical-sciences.1000127. DOI
Yang J., Buettner K.E., DiNenna V.L., Curtis J.S. Computational and experimental study of the combined effects of particle aspect ratio and effective diameter on flow behavior. Chem. Eng. Sci. 2020;255:117621. doi: 10.1016/j.ces.2022.117621. DOI
Fan J., Luu L.H., Philippe P., Noury G. Discharge rate characterization for submerged grains flowing through a hopper using DEM-LBM simulations. Powder Technol. 2022;404:117421. doi: 10.1016/j.powtec.2022.117421. DOI
Fukuda I.M., Pinto C.F.F., Moreira C.D.S., Saviano A.M., Lourenço F.R. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD) Braz. J. Pharm. Sci. 2018;54:1–16. doi: 10.1590/s2175-97902018000001006. DOI
Liu H., Jia F., Xiao Y., Han Y., Li G., Li A., Bai S. Numerical analysis of the effect of the contraction rate of the curved hopper on flow characteristics of the silo discharge. Powder Technol. 2019;356:858–870. doi: 10.1016/j.powtec.2019.09.033. DOI
Baxter T., Barnum R., Prescott J.K. Flow: General Principles of Bulk Solids Handling. In: Augsburger L.L., Hoag W.S., editors. Pharmaceutical Dosage Forms: Tablets. 3rd ed. CRC Press; Boca Raton, FL, USA: 2008. pp. 75–110. Volume 1: Unit Operations and Mechanical Properties. DOI