Translating the Manufacture of Immunotherapeutic PLGA Nanoparticles from Lab to Industrial Scale: Process Transfer and In Vitro Testing

. 2022 Aug 13 ; 14 (8) : . [epub] 20220813

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36015316

Grantová podpora
686089 European Union
Spinoza grant Dutch Research Council - Netherlands
269019 ERC Advanced Grant Pathfinder
2009-4402 Dutch cancer society award

Odkazy

PubMed 36015316
PubMed Central PMC9416304
DOI 10.3390/pharmaceutics14081690
PII: pharmaceutics14081690
Knihovny.cz E-zdroje

Poly(lactic-co-glycolic acid) (PLGA) nanoparticle-based drug delivery systems are known to offer a plethora of potential therapeutic benefits. However, challenges related to large-scale manufacturing, such as the difficulty of reproducing complex formulations and high manufacturing costs, hinder their clinical and commercial development. In this context, a reliable manufacturing technique suitable for the scale-up production of nanoformulations without altering efficacy and safety profiles is highly needed. In this paper, we develop an inline sonication process and adapt it to the industrial scale production of immunomodulating PLGA nanovaccines developed using a batch sonication method at the laboratory scale. The investigated formulations contain three distinct synthetic peptides derived from the carcinogenic antigen New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1) together with an invariant natural killer T-cell (iNKT) activator, threitolceramide-6 (IMM60). Process parameters were optimized to obtain polymeric nanovaccine formulations with a mean diameter of 150 ± 50 nm and a polydispersity index <0.2. Formulation characteristics, including encapsulation efficiencies, release profiles and in vitro functional and toxicological profiles, are assessed and statistically compared for each formulation. Overall, scale-up formulations obtained by inline sonication method could replicate the colloidal and functional properties of the nanovaccines developed using batch sonication at the laboratory scale. Both types of formulations induced specific T-cell and iNKT cell responses in vitro without any toxicity, highlighting the suitability of the inline sonication method for the continuous scale-up of nanomedicine formulations in terms of efficacy and safety.

Zobrazit více v PubMed

Dose Escalation Study of Immunomodulatory Nanoparticles (PRECIOUS-01) [(accessed on 26 August 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04751786.

Dölen Y., Gileadi U., Chen J.-L., Valente M., Creemers J.H.A., Van Dinther E.A.W., van Riessen N.K., Jäger E., Hruby M., Cerundolo V., et al. PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Front. Immunol. 2021;12:641703. doi: 10.3389/fimmu.2021.641703. PubMed DOI PMC

Bairwa M., Pilania M., Gupta V., Yadav K. Hypertension Vaccine may be a boon to millions in developing world. Hum. Vaccines Immunother. 2014;10:708–713. doi: 10.4161/hv.27520. PubMed DOI PMC

Hu Y., Zheng H., Huang W., Zhang C. A novel and efficient nicotine vaccine using nano-lipoplex as a delivery vehicle. Hum. Vaccines Immunother. 2014;10:64–72. doi: 10.4161/hv.26635. PubMed DOI PMC

Chackerian B. Virus-like particle based vaccines for Alzheimer disease. Hum. Vaccines. 2010;6:926–930. doi: 10.4161/hv.6.11.12655. PubMed DOI

Thukral A., Ross K., Hansen C., Phanse Y., Narasimhan B., Steinberg H., Talaat A.M. A single dose polyanhydride-based nanovaccine against paratuberculosis infection. npj Vaccines. 2020;5:15. doi: 10.1038/s41541-020-0164-y. PubMed DOI PMC

Sahu R., Dixit S., Verma R., Duncan S.A., Coats M.T., Giambartolomei G.H., Singh S.R., Dennis V.A. A nanovaccine formulation of Chlamydia recombinant MOMP encapsulated in PLGA 85:15 nanoparticles augments CD4(+) effector (CD44(high) CD62L(low)) and memory (CD44(high) CD62L(high)) T-cells in immunized mice. Nanomedicine. 2020;29:102257. doi: 10.1016/j.nano.2020.102257. PubMed DOI PMC

Maleki M., Salouti M., Shafiee Ardestani M., Talebzadeh A. Preparation of a nanovaccine against Brucella melitensis M16 based on PLGA nanoparticles and oligopolysaccharide antigen. Artif. Cells Nanomed. Biotechnol. 2019;47:4248–4256. doi: 10.1080/21691401.2019.1687490. PubMed DOI

Chauhan G., Madou M.J., Kalra S., Chopra V., Ghosh D., Martinez-Chapa S.O. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano. 2020;14:7760–7782. doi: 10.1021/acsnano.0c04006. PubMed DOI

Đorđević S., Gonzalez M.M., Conejos-Sánchez I., Carreira B., Pozzi S., Acúrcio R.C., Satchi-Fainaro R., Florindo H.F., Vicent M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2022;12:500–525. doi: 10.1007/s13346-021-01024-2. PubMed DOI PMC

Zhao L., Seth A., Wibowo N., Zhao C.-X., Mitter N., Yu C., Middelberg A.P.J. Nanoparticle vaccines. Vaccine. 2014;32:327–337. doi: 10.1016/j.vaccine.2013.11.069. PubMed DOI

Operti M.C., Bernhardt A., Grimm S., Engel A., Figdor C.G., Tagit O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm. 2021;605:120807. doi: 10.1016/j.ijpharm.2021.120807. PubMed DOI

Hua S., de Matos M.B.C., Metselaar J.M., Storm G. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Front. Pharmacol. 2018;9:790. doi: 10.3389/fphar.2018.00790. PubMed DOI PMC

Operti M.C., Fecher D., van Dinther E.A.W., Grimm S., Jaber R., Figdor C.G., Tagit O. A comparative assessment of continuous production techniques to generate sub-micron size PLGA particles. Int. J. Pharm. 2018;550:140–148. doi: 10.1016/j.ijpharm.2018.08.044. PubMed DOI

Operti M.C., Bernhardt A., Sincari V., Jager E., Grimm S., Engel A., Hruby M., Figdor C.G., Tagit O. Industrial Scale Manufacturing and Downstream Processing of PLGA-Based Nanomedicines Suitable for Fully Continuous Operation. Pharmaceutics. 2022;14:276. doi: 10.3390/pharmaceutics14020276. PubMed DOI PMC

Operti M.C., Dölen Y., Keulen J., van Dinther E.A., Figdor C.G., Tagit O. Microfluidics-Assisted Size Tuning and Biological Evaluation of PLGA Particles. Pharmaceutics. 2019;11:590. doi: 10.3390/pharmaceutics11110590. PubMed DOI PMC

Thomas R., Al-Khadairi G., Roelands J., Hendrickx W., Dermime S., Bedognetti D., Decock J. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front. Immunol. 2018;9:947. doi: 10.3389/fimmu.2018.00947. PubMed DOI PMC

Burn O.K., Pankhurst T.E., Painter G.F., Connor L.M., Hermans I.F. Harnessing NKT cells for vaccination. Oxf. Open Immunol. 2021;2:iqab013. doi: 10.1093/oxfimm/iqab013. PubMed DOI PMC

PubChem Threitolceramide. [(accessed on 26 August 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Threitolceramide.

Dölen Y., Kreutz M., Gileadi U., Tel J., Vasaturo A., van Dinther E.A.W., van Hout-Kuijer M.A., Cerundolo V., Figdor C.G. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses. OncoImmunology. 2016;5:e1068493. doi: 10.1080/2162402X.2015.1068493. PubMed DOI PMC

Dölen Y., Valente M., Tagit O., Jäger E., Van Dinther E.A.W., van Riessen N.K., Hruby M., Gileadi U., Cerundolo V., Figdor C.G. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology. 2020;9:1738813. doi: 10.1080/2162402X.2020.1738813. PubMed DOI PMC

Choo S.Y. The HLA system: Genetics, immunology, clinical testing, and clinical implications. Yonsei Med. J. 2007;48:11–23. doi: 10.3349/ymj.2007.48.1.11. PubMed DOI PMC

ProtParam tool—Expasy. [(accessed on 26 August 2021)]. Available online: https://web.expasy.org/protparam.

Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker J.M., editor. The Proteomics Protocols Handbook. Humana Press; Totowa, NJ, USA: 2005. pp. 571–607.

Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. PubMed DOI

Oliver R.C., Lipfert J., Fox D.A., Lo R.H., Doniach S., Columbus L. Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS ONE. 2013;8:e62488. doi: 10.1371/journal.pone.0062488. PubMed DOI PMC

Dutta D., Salifu M., Sirianni R.W., Stabenfeldt S.E. Tailoring sub-micron PLGA particle release profiles via centrifugal fractioning. J. Biomed. Mater. Res. A. 2016;104:688–696. doi: 10.1002/jbm.a.35608. PubMed DOI PMC

Wieczorek M., Abualrous E.T., Sticht J., Álvaro-Benito M., Stolzenberg S., Noé F., Freund C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front. Immunol. 2017;8:292. doi: 10.3389/fimmu.2017.00292. PubMed DOI PMC

Jensen K.K., Rantos V., Jappe E.C., Olsen T.H., Jespersen M.C., Jurtz V., Jessen L.E., Lanzarotti E., Mahajan S., Peters B., et al. TCRpMHCmodels: Structural modelling of TCR-pMHC class I complexes. Sci. Rep. 2019;9:14530. doi: 10.1038/s41598-019-50932-4. PubMed DOI PMC

Castro F., Cardoso A.P., Gonçalves R.M., Serre K., Oliveira M.J. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front. Immunol. 2018;9:847. doi: 10.3389/fimmu.2018.00847. PubMed DOI PMC

Bosshart H., Heinzelmann M. THP-1 cells as a model for human monocytes. Ann. Transl. Med. 2016;4:438. doi: 10.21037/atm.2016.08.53. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...