Fine mapping of powdery mildew and stripe rust resistance genes Pm5V/Yr5V transferred from Dasypyrum villosum into wheat without yield penalty

. 2022 Oct ; 135 (10) : 3629-3642. [epub] 20220829

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36038638

Grantová podpora
31971938 National Natural Science Foundation of China
31871619 National Natural Science Foundation of China

Odkazy

PubMed 36038638
DOI 10.1007/s00122-022-04206-9
PII: 10.1007/s00122-022-04206-9
Knihovny.cz E-zdroje

The novel wheat powdery mildew and stripe rust resistance genes Pm5V/Yr5V are introgressed from Dasypyrum villosum and fine mapped to a narrowed region in 5VS, and their effects on yield-related traits were characterized. The powdery mildew and stripe rust seriously threaten wheat production worldwide. Dasypyrum villosum (2n = 2x = 14, VV), a relative of wheat, is a valuable resource of resistance genes for wheat improvement. Here, we describe a platform for rapid introgression of the resistance genes from D. villosum into the wheat D genome. A complete set of new wheat-D. villosum V (D) disomic substitution lines and 11 D/V Robertsonian translocation lines are developed and characterized by molecular cytogenetic method. A new T5DL·5V#5S line NAU1908 shows resistance to both powdery mildew and stripe rust, and the resistances associated with 5VS are confirmed to be conferred by seedling resistance gene Pm5V and adult-plant resistance gene Yr5V, respectively. We flow-sort chromosome arm 5VS and sequence it using the Illumina NovaSeq 6000 system that allows us to generate 5VS-specific markers for genetic mapping of Pm5V/Yr5V. Fine mapping shows that Pm5V and Yr5V are closely linked and the location is narrowed to an approximately 0.9 Mb region referencing the sequence of Chinese Spring 5DS. In this region, a NLR gene in scaffold 24,874 of 5VS orthologous to TraesCS5D02G044300 is the most likely candidate gene for Pm5V. Soft- and hard-grained T5DL·5V#5S introgressions confer resistance to both powdery mildew and stripe rust in diverse wheat genetic backgrounds without yield penalty. Meanwhile, significant decrease in plant height and increase in yield were observed in NIL-5DL·5V#5S compared with that in NIL-5DL·5DS. These results indicate that Pm5V/Yr5V lines might have the potential value to facilitate wheat breeding for disease resistance.

Zobrazit více v PubMed

Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moore G (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101:863–872 DOI

Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219 DOI

Chen F, Jia HY, Zhang XJ, Qiao LY, Li X, Zheng J, Guo HJ, Powers C, Yan LL, Chang ZJ (2019) Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat. Crop J 7:771–783 DOI

Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32 DOI

Gaurav K, Arora S, Silva P, Sánchez-Martín J, Horsnell R, Gao LL, Brar GS, Widrig V, Raupp WJ, Singh N, Wu SY, Kale SM, Chinoy C, Nicholson P, Quiroz-Chvez J, Simmonds J, Hayta S, Smedley MA, Harwood W, Pearce S, Gilbert D, Kangara N, Gardener C, Forner-Martnez M, Liu JQ, Yu GT, Boden SA, Pascucci A, Ghosh S, Hafeez AN, O’Hara T, Waites J, Cheema J, Steuernagel B, Patpour M, Justesen AF, Liu SY, Rudd JC, Avni R, Sharon A, Steiner B, Kirana RP, Buerstmayr H, Mehrabi AA, Nasyrova FY, Chayut N, Matny O, Steffenson BJ, Sandhu N, Chhuneja P, Lagudah E, Elkot AF, Tyrrell S, Bian XD, Davey RP, Simonsen M, Schauser L, Tiwari VK, Randy KH, Hucl P, Li AL, Liu DC, Mao L, Xu S, Brown-Guedira G, Faris J, Dvorak J, Luo MC, Krasileva K, Lux T, Artmeier S (2022) Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat Biotechnol 40:422–431 DOI

Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Nat Acad Sci USA 108:7657–7658 DOI

Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucrett S (2013) FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8:e57994 DOI

Gradzielewska A (2006) The genus Dasypyrum — part 2. Dasypyrum villosum — a wild species used in wheat improvement. Euphytica 152:441–454 DOI

Hafeez AN, Arora S, Ghosh S, Gilbert D, Bowden RL, Wulff BBH (2021) Creation and judicious application of a wheat resistance gene atlas. Mol Plant 14:1053–1070 DOI

Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao CX, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754 DOI

Hurni S, Brunner B, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B (2013) Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76:957–969 DOI

Jordan T, Seeholzer S, Schwizer S, Töller A, Somssich IE, Keller B (2011) The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant J 65:610–621 DOI

King J, Grewal S, Yang CY, Hubbart S, Scholefield D, Ashling S, Edwards KJ, Allen MA, Burridge A, Bloor C, Davassi A, da Silva GJ, Chalmers K, King IP (2017) A step change in the transfer of interspecifc variation into wheat from Amblyopyrum muticum. Plant Biotech J 15:217–226 DOI

Li GW, Wang LJ, Yang JP, He H, Jin HB, Li XM, Ren TH, Ren ZL, Li F, Han X, Zhao XG, Dong LL, Li YW, Song ZP, Yan ZH, Zheng NN, Shi CL, Wang ZH, Yang SL, Xiong ZJ, Zhang ML, Sun GH, Zheng X, Gou MY, Ji CM, Du JK, Zheng HK, Doleel J, Deng XW, Stein N, Yang QH, Zhang KP, Wang DW (2021) A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet 53:574–584 DOI

Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225 DOI

Luo M, Xie LQ, Chakraborty S, Wang AH, Matny O, Jugovich M, Kolmer JA, Richardson T, Bhatt D, Hoque M, Patpour M, Sørensen C, Ortiz D, Dodds P, Steuernagel B, Wulff BBH, Upadhyaya NM, Mago R, Periyannan S, Lagudah E, Freedman R, Lynne Reuber T, Steffenson BJ, Ayliffe M (2021) A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat Biotechnol 39:561–566 DOI

Mago R, Zhang P, Vautrin S, Šimková H, Bansal U, Luo MC, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Doležel J, Bergès H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plant 1:15186 DOI

Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, Wulff BBH, Steuernagel B, Mayer KF, Olsen OA (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092 DOI

Mirzaghaderi G, Mason AS (2019) Broadening the bread wheat D genome. Theor Appl Genet 132:1295–1307 DOI

De Pace C, Vaccino P, Cionini G, Pasquini M, Bizzarri M, Qualset CO (2011) Dasypyrum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals, vol 1, chapter 4. Springer, Heidelberg, pp 185–292

Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788 DOI

Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26:496–500 DOI

Praz CR, Bourras S, Zeng F, Sánchez-Martín J, Menardo F, Xue M, Yang L, Roffler S, Böni R, Herren G, McNally KE, Ben-David R, Parlange F, Oberhaensli S, Flückiger S, Schäfer LK, Wicker T, Yu D, Keller B (2017) AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. New Phytolog 213:1301–1314 DOI

Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BBH (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221 DOI

Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439 DOI

Sheng BQ, Duan XY (1991) Modification on the evaluation methods of 0–9 level of powdery mildew infection on wheat. Biotech J Agric Sci 9:37–39

Subbarao GV, Kishii M, Bozal-Leorri A, Ortiz-Monasterio I, Gao X, Ibba MI, Karwat H, Gonzalez-Moro MB, Gonzalez-Murua C, Yoshihashi T, Tobita S, Kommerell V, Braun HJ, Iwanaga M (2021) Enlisting wild grass genes to combat nitrification in wheat farming: a nature-based solution. Proc Nat Acad Sci USA 118:e2106595118 DOI

Tadesse W, Sanchez-Garcia M, Assefa SG, Amri A, Bishaw Z, Ogbonnaya FC, Baum M (2019) Genetic gains in wheat breeding and its role in feeding the world. Crop Breed Genet Genom 1:e190005

Vrána J, Kubaláková M, Simková H, Cíhalíková J, Lysák MA, Dolezel J (2000) Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041 DOI

Wang X, Cao AZ, Yu CM, Wang DW, Wang XE, Chen PD (2010) Establishment of an effective virus induced gene silencing system with BSMV in Haynaldia villosa. Mol Biol Rep 37:967–972 DOI

Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, Xiao G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu SS, Bai G, Nevo E, Gao C, Ohm H, Kong L (2020) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:eaba5435 DOI

Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29 DOI

Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones JDG, Karafiátová M, Vrána J, Bartoš J, Doležel J, Tian Y, Wu Y, Cao A (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878 DOI

Zhang RQ, Cao YP, Wang XE, Feng YG, Chen PD (2010) Development and characterization of a Triticum aestivum-D. villosum T5VS.5DL translocation line with soft grain texture. J Cereal Sci 51:220–225 DOI

Zhang RQ, Sun BX, Chen J, Cao AZ, Xing LP, Feng YG, Lan CX, Chen PD (2016) Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet 129:975–1984 DOI

Zhang XD, Wei X, Xiao J, Yuan CX, Wu YF, Cao AZ, Xing LP, Chen PD, Zhang SZ, Wang XE, Wang HY (2017) Whole genome development of intron targeting (IT) markers specific for Dasypyrum villosum chromosomes based on next-generation sequencing technology. Mol Breed 37:11 DOI

Zhang RQ, Fan YL, Kong LN, Wang ZJ, Wu JZ, Xing LP, Cao AZ, Feng YG (2018) Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor Appl Genet 131:2613–2620 DOI

Zhang RQ, Xiong CX, Mu HQ, Yao RN, Meng XR, Kong LN, Xing LP, Wu JZ, Feng YG, Cao AZ (2021) Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J 9:882–888 DOI

Zhou SS, Zhang JP, Chen YH, Liu WH, Lu YQ, Yang XM, Li XQ, Jia JZ, Liu X, Li LH (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660 K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotech J 16:818–827 DOI

Zhou Y, Bai SL, Li H, Su GL, Zheng DL, Ma FF, Zhao XP, Nie F, Li JY, Chen LY, Lv LL, Zhu LL, Fan RX, Ge YF, Shaheen A, Guo GH, Zhang Z, Ma JC, Liang HH, Qiu XL, Hu JM, Sun T, Hou JY, Xu HX, Xue SL, Jiang WK, Huang JL, Li SP, Zou CS, Song CP (2021) Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat Plants 7:774–786 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...