Fine mapping of powdery mildew and stripe rust resistance genes Pm5V/Yr5V transferred from Dasypyrum villosum into wheat without yield penalty
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
31971938
National Natural Science Foundation of China
31871619
National Natural Science Foundation of China
PubMed
36038638
DOI
10.1007/s00122-022-04206-9
PII: 10.1007/s00122-022-04206-9
Knihovny.cz E-zdroje
- MeSH
- Basidiomycota * MeSH
- lipnicovité genetika MeSH
- nemoci rostlin genetika MeSH
- odolnost vůči nemocem genetika MeSH
- pšenice * genetika MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
The novel wheat powdery mildew and stripe rust resistance genes Pm5V/Yr5V are introgressed from Dasypyrum villosum and fine mapped to a narrowed region in 5VS, and their effects on yield-related traits were characterized. The powdery mildew and stripe rust seriously threaten wheat production worldwide. Dasypyrum villosum (2n = 2x = 14, VV), a relative of wheat, is a valuable resource of resistance genes for wheat improvement. Here, we describe a platform for rapid introgression of the resistance genes from D. villosum into the wheat D genome. A complete set of new wheat-D. villosum V (D) disomic substitution lines and 11 D/V Robertsonian translocation lines are developed and characterized by molecular cytogenetic method. A new T5DL·5V#5S line NAU1908 shows resistance to both powdery mildew and stripe rust, and the resistances associated with 5VS are confirmed to be conferred by seedling resistance gene Pm5V and adult-plant resistance gene Yr5V, respectively. We flow-sort chromosome arm 5VS and sequence it using the Illumina NovaSeq 6000 system that allows us to generate 5VS-specific markers for genetic mapping of Pm5V/Yr5V. Fine mapping shows that Pm5V and Yr5V are closely linked and the location is narrowed to an approximately 0.9 Mb region referencing the sequence of Chinese Spring 5DS. In this region, a NLR gene in scaffold 24,874 of 5VS orthologous to TraesCS5D02G044300 is the most likely candidate gene for Pm5V. Soft- and hard-grained T5DL·5V#5S introgressions confer resistance to both powdery mildew and stripe rust in diverse wheat genetic backgrounds without yield penalty. Meanwhile, significant decrease in plant height and increase in yield were observed in NIL-5DL·5V#5S compared with that in NIL-5DL·5DS. These results indicate that Pm5V/Yr5V lines might have the potential value to facilitate wheat breeding for disease resistance.
Zobrazit více v PubMed
Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moore G (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101:863–872 DOI
Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219 DOI
Chen F, Jia HY, Zhang XJ, Qiao LY, Li X, Zheng J, Guo HJ, Powers C, Yan LL, Chang ZJ (2019) Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat. Crop J 7:771–783 DOI
Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32 DOI
Gaurav K, Arora S, Silva P, Sánchez-Martín J, Horsnell R, Gao LL, Brar GS, Widrig V, Raupp WJ, Singh N, Wu SY, Kale SM, Chinoy C, Nicholson P, Quiroz-Chvez J, Simmonds J, Hayta S, Smedley MA, Harwood W, Pearce S, Gilbert D, Kangara N, Gardener C, Forner-Martnez M, Liu JQ, Yu GT, Boden SA, Pascucci A, Ghosh S, Hafeez AN, O’Hara T, Waites J, Cheema J, Steuernagel B, Patpour M, Justesen AF, Liu SY, Rudd JC, Avni R, Sharon A, Steiner B, Kirana RP, Buerstmayr H, Mehrabi AA, Nasyrova FY, Chayut N, Matny O, Steffenson BJ, Sandhu N, Chhuneja P, Lagudah E, Elkot AF, Tyrrell S, Bian XD, Davey RP, Simonsen M, Schauser L, Tiwari VK, Randy KH, Hucl P, Li AL, Liu DC, Mao L, Xu S, Brown-Guedira G, Faris J, Dvorak J, Luo MC, Krasileva K, Lux T, Artmeier S (2022) Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat Biotechnol 40:422–431 DOI
Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Nat Acad Sci USA 108:7657–7658 DOI
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucrett S (2013) FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8:e57994 DOI
Gradzielewska A (2006) The genus Dasypyrum — part 2. Dasypyrum villosum — a wild species used in wheat improvement. Euphytica 152:441–454 DOI
Hafeez AN, Arora S, Ghosh S, Gilbert D, Bowden RL, Wulff BBH (2021) Creation and judicious application of a wheat resistance gene atlas. Mol Plant 14:1053–1070 DOI
Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao CX, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754 DOI
Hurni S, Brunner B, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B (2013) Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76:957–969 DOI
Jordan T, Seeholzer S, Schwizer S, Töller A, Somssich IE, Keller B (2011) The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant J 65:610–621 DOI
King J, Grewal S, Yang CY, Hubbart S, Scholefield D, Ashling S, Edwards KJ, Allen MA, Burridge A, Bloor C, Davassi A, da Silva GJ, Chalmers K, King IP (2017) A step change in the transfer of interspecifc variation into wheat from Amblyopyrum muticum. Plant Biotech J 15:217–226 DOI
Li GW, Wang LJ, Yang JP, He H, Jin HB, Li XM, Ren TH, Ren ZL, Li F, Han X, Zhao XG, Dong LL, Li YW, Song ZP, Yan ZH, Zheng NN, Shi CL, Wang ZH, Yang SL, Xiong ZJ, Zhang ML, Sun GH, Zheng X, Gou MY, Ji CM, Du JK, Zheng HK, Doleel J, Deng XW, Stein N, Yang QH, Zhang KP, Wang DW (2021) A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet 53:574–584 DOI
Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225 DOI
Luo M, Xie LQ, Chakraborty S, Wang AH, Matny O, Jugovich M, Kolmer JA, Richardson T, Bhatt D, Hoque M, Patpour M, Sørensen C, Ortiz D, Dodds P, Steuernagel B, Wulff BBH, Upadhyaya NM, Mago R, Periyannan S, Lagudah E, Freedman R, Lynne Reuber T, Steffenson BJ, Ayliffe M (2021) A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat Biotechnol 39:561–566 DOI
Mago R, Zhang P, Vautrin S, Šimková H, Bansal U, Luo MC, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Doležel J, Bergès H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plant 1:15186 DOI
Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, Wulff BBH, Steuernagel B, Mayer KF, Olsen OA (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092 DOI
Mirzaghaderi G, Mason AS (2019) Broadening the bread wheat D genome. Theor Appl Genet 132:1295–1307 DOI
De Pace C, Vaccino P, Cionini G, Pasquini M, Bizzarri M, Qualset CO (2011) Dasypyrum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals, vol 1, chapter 4. Springer, Heidelberg, pp 185–292
Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788 DOI
Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26:496–500 DOI
Praz CR, Bourras S, Zeng F, Sánchez-Martín J, Menardo F, Xue M, Yang L, Roffler S, Böni R, Herren G, McNally KE, Ben-David R, Parlange F, Oberhaensli S, Flückiger S, Schäfer LK, Wicker T, Yu D, Keller B (2017) AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. New Phytolog 213:1301–1314 DOI
Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BBH (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221 DOI
Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439 DOI
Sheng BQ, Duan XY (1991) Modification on the evaluation methods of 0–9 level of powdery mildew infection on wheat. Biotech J Agric Sci 9:37–39
Subbarao GV, Kishii M, Bozal-Leorri A, Ortiz-Monasterio I, Gao X, Ibba MI, Karwat H, Gonzalez-Moro MB, Gonzalez-Murua C, Yoshihashi T, Tobita S, Kommerell V, Braun HJ, Iwanaga M (2021) Enlisting wild grass genes to combat nitrification in wheat farming: a nature-based solution. Proc Nat Acad Sci USA 118:e2106595118 DOI
Tadesse W, Sanchez-Garcia M, Assefa SG, Amri A, Bishaw Z, Ogbonnaya FC, Baum M (2019) Genetic gains in wheat breeding and its role in feeding the world. Crop Breed Genet Genom 1:e190005
Vrána J, Kubaláková M, Simková H, Cíhalíková J, Lysák MA, Dolezel J (2000) Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041 DOI
Wang X, Cao AZ, Yu CM, Wang DW, Wang XE, Chen PD (2010) Establishment of an effective virus induced gene silencing system with BSMV in Haynaldia villosa. Mol Biol Rep 37:967–972 DOI
Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, Xiao G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu SS, Bai G, Nevo E, Gao C, Ohm H, Kong L (2020) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:eaba5435 DOI
Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29 DOI
Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones JDG, Karafiátová M, Vrána J, Bartoš J, Doležel J, Tian Y, Wu Y, Cao A (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878 DOI
Zhang RQ, Cao YP, Wang XE, Feng YG, Chen PD (2010) Development and characterization of a Triticum aestivum-D. villosum T5VS.5DL translocation line with soft grain texture. J Cereal Sci 51:220–225 DOI
Zhang RQ, Sun BX, Chen J, Cao AZ, Xing LP, Feng YG, Lan CX, Chen PD (2016) Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet 129:975–1984 DOI
Zhang XD, Wei X, Xiao J, Yuan CX, Wu YF, Cao AZ, Xing LP, Chen PD, Zhang SZ, Wang XE, Wang HY (2017) Whole genome development of intron targeting (IT) markers specific for Dasypyrum villosum chromosomes based on next-generation sequencing technology. Mol Breed 37:11 DOI
Zhang RQ, Fan YL, Kong LN, Wang ZJ, Wu JZ, Xing LP, Cao AZ, Feng YG (2018) Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor Appl Genet 131:2613–2620 DOI
Zhang RQ, Xiong CX, Mu HQ, Yao RN, Meng XR, Kong LN, Xing LP, Wu JZ, Feng YG, Cao AZ (2021) Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J 9:882–888 DOI
Zhou SS, Zhang JP, Chen YH, Liu WH, Lu YQ, Yang XM, Li XQ, Jia JZ, Liu X, Li LH (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660 K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotech J 16:818–827 DOI
Zhou Y, Bai SL, Li H, Su GL, Zheng DL, Ma FF, Zhao XP, Nie F, Li JY, Chen LY, Lv LL, Zhu LL, Fan RX, Ge YF, Shaheen A, Guo GH, Zhang Z, Ma JC, Liang HH, Qiu XL, Hu JM, Sun T, Hou JY, Xu HX, Xue SL, Jiang WK, Huang JL, Li SP, Zou CS, Song CP (2021) Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat Plants 7:774–786 DOI