PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
I 4066
Austrian Science Fund FWF - Austria
I 4154
Austrian Science Fund FWF - Austria
P 27132
Austrian Science Fund FWF - Austria
I 4156
Austrian Science Fund FWF - Austria
R35 CA210064
NCI NIH HHS - United States
PubMed
36045346
PubMed Central
PMC9434917
DOI
10.1186/s12943-022-01640-7
PII: 10.1186/s12943-022-01640-7
Knihovny.cz E-resources
- Keywords
- ALCL, Apoptosis, NPM-ALK, PDGFRβ, STAT3, STAT5A, STAT5B,
- MeSH
- Anaplastic Lymphoma Kinase MeSH
- Lymphoma, Large-Cell, Anaplastic * genetics pathology MeSH
- Phosphorylation MeSH
- Carcinogenesis metabolism MeSH
- Humans MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Receptor, Platelet-Derived Growth Factor beta * metabolism pharmacology MeSH
- Signal Transduction MeSH
- STAT3 Transcription Factor * metabolism MeSH
- STAT5 Transcription Factor * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anaplastic Lymphoma Kinase MeSH
- Receptor, Platelet-Derived Growth Factor beta * MeSH
- STAT3 protein, human MeSH Browser
- STAT3 Transcription Factor * MeSH
- STAT5 Transcription Factor * MeSH
BACKGROUND: Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin T cell lymphoma commonly driven by NPM-ALK. AP-1 transcription factors, cJUN and JUNb, act as downstream effectors of NPM-ALK and transcriptionally regulate PDGFRβ. Blocking PDGFRβ kinase activity with imatinib effectively reduces tumor burden and prolongs survival, although the downstream molecular mechanisms remain elusive. METHODS AND RESULTS: In a transgenic mouse model that mimics PDGFRβ-driven human ALCL in vivo, we identify PDGFRβ as a driver of aggressive tumor growth. Mechanistically, PDGFRβ induces the pro-survival factor Bcl-xL and the growth-enhancing cytokine IL-10 via STAT5 activation. CRISPR/Cas9 deletion of both STAT5 gene products, STAT5A and STAT5B, results in the significant impairment of cell viability compared to deletion of STAT5A, STAT5B or STAT3 alone. Moreover, combined blockade of STAT3/5 activity with a selective SH2 domain inhibitor, AC-4-130, effectively obstructs tumor development in vivo. CONCLUSIONS: We therefore propose PDGFRβ as a novel biomarker and introduce PDGFRβ-STAT3/5 signaling as an important axis in aggressive ALCL. Furthermore, we suggest that inhibition of PDGFRβ or STAT3/5 improve existing therapies for both previously untreated and relapsed/refractory ALK+ ALCL patients.
Boltzmann Institute Applied Diagnostics 1090 Vienna Austria
CBMed Core Lab Medical University of Vienna 1090 Vienna Austria
Center for Cancer Research Medical University of Vienna 1090 Vienna Austria
Center for Medical Research Medical University of Graz 8010 Graz Austria
Central European Institute of Technology Masaryk University Brno Czech Republic
Centre for Anatomy and Cell Biology Medical University of Vienna 1090 Vienna Austria
Department of Chemistry University of Toronto Toronto ON M5S 3H6 Canada
Department of Computational Biology St Jude Children's Research Hospital Memphis TN USA
Department of Dermatology Medical University of Graz 8036 Graz Austria
Department of Pathology Medical University of Vienna 1090 Vienna Austria
Department of Pediatric Oncology Dana Farber Cancer Institute Harvard Medical School Boston MA USA
Division of Nuclear Medicine Medical University of Vienna 1090 Vienna Austria
German Cancer Consortium 69120 Heidelberg Germany
Institute of Pathology Charité Medical University of Berlin 10117 Berlin Germany
Institute of Pathology University of Wuerzburg 97080 Würzburg Germany
Max Delbrück Center for Molecular Medicine 13125 Berlin Germany
Pediatric Hematology and Oncology University Hospital Hamburg Eppendorf Hamburg Germany
Unit of Laboratory Animal Pathology University of Veterinary Medicine Vienna 1210 Vienna Austria
See more in PubMed
Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC
Stein H, Foss HD, Dürkop H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–3695. doi: 10.1182/blood.V96.12.3681. PubMed DOI
Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–1284. doi: 10.1126/science.8122112. PubMed DOI
Ducray SP, Natarajan K, Garland GD, Turner SD, Egger G. The transcriptional roles of ALK fusion proteins in tumorigenesis. Cancers (Basel). 2019;11(8):1–23. doi: 10.3390/cancers11081074. PubMed DOI PMC
Marzec M, Zhang Q, Goradia A, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1) Proc Natl Acad Sci U S A. 2008;105(52):20852–20857. doi: 10.1073/pnas.0810958105. PubMed DOI PMC
Prokoph N, Probst NA, Lee LC, et al. IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma. Blood. 2020;136(14):1657–1669. doi: 10.1182/blood.2019003793. PubMed DOI PMC
Chiarle R, Simmons WJ, Cai H, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 2005;11(6):623–629. doi: 10.1038/nm1249. PubMed DOI
Prutsch N, Gurnhofer E, Suske T, et al. Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia. 2019;33(3):696–709. doi: 10.1038/s41375-018-0239-1. PubMed DOI PMC
Zhang Q, Wang HY, Liu X, Wasik MA. STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression. Nat Med. 2007. 10.1038/nm1659. PubMed
Brugieres MC, Le Deley H, Pacquement Z, et al. CD30+ Anaplastic Large-Cell Lymphoma in Children: Analysis of 82 Patients Enrolled in Two Consecutive Studies of the French Society of Pediatric Oncology By. 1998. pp. 3591–3598. PubMed
Rosolen A, Pillon M, Garaventa A, et al. Anaplastic large cell lymphoma treated with a leukemia-like therapy: report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 protocol. Cancer. 2005;104(10):2133–2140. doi: 10.1002/cncr.21438. PubMed DOI
Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Münster group trial NHL-BFM 90. Blood. 2001;97(12):3699–3706. doi: 10.1182/blood.V97.12.3699. PubMed DOI
Laver JH, Kraveka JM, Hutchison RE, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a pediatric oncology group phase III trial. J Clin Oncol. 2005;23(3):541–547. doi: 10.1200/JCO.2005.11.075. PubMed DOI
Prokoph N, Larose H, Lim MS, Burke GAA, Turner SD. Treatment options for paediatric anaplastic large cell lymphoma (ALCL): current standard and beyond. Cancers (Basel). 2018;10(4):1–18. doi: 10.3390/cancers10040099. PubMed DOI PMC
Shaw AT, Kim TM, Crinò L, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(7):874–886. doi: 10.1016/S1470-2045(17)30339-X. PubMed DOI
Seto T, Nishio M, Hida T, et al. Final PFS analysis and safety data from the phase III J-ALEX study of alectinib (ALC) vs. crizotinib (CRZ) in ALK-inhibitor naïve ALK-positive non-small cell lung cancer (ALK+ NSCLC) J Clin Oncol. 2019;37(15_suppl):9092. doi: 10.1200/JCO.2019.37.15_suppl.9092. DOI
Camidge DR, Dziadziuszko R, Peters S, et al. Updated Efficacy and Safety Data and Impact of the EML4-ALK Fusion Variant on the Efficacy of Alectinib in Untreated ALK-Positive Advanced Non–Small Cell Lung Cancer in the Global Phase III ALEX Study. J Thorac Oncol. 2019;14(7):1233–1243. doi: 10.1016/j.jtho.2019.03.007. PubMed DOI
Huber RM, Hansen KH, Paz-Ares Rodríguez L, et al. Brigatinib in Crizotinib-refractory ALK+ NSCLC: 2-year follow-up on systemic and intracranial outcomes in the phase 2 ALTA trial. J Thorac Oncol. 2020;15(3):404–415. doi: 10.1016/j.jtho.2019.11.004. PubMed DOI
Camidge DR, Kim HR, Ahn M-J, et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor–Naive ALK-Positive Non–Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial. J Clin Oncol. 2020;38(31):3592–3603. doi: 10.1200/JCO.20.00505. PubMed DOI PMC
Solomon BJ, Besse B, Bauer TM, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654–1667. doi: 10.1016/S1470-2045(18)30649-1. PubMed DOI
Drilon A, Siena S, Ou S-HI, et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor Entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1) Cancer Discov. 2017;7(4):400–409. doi: 10.1158/2159-8290.CD-16-1237. PubMed DOI PMC
Sharma GG, Mota I, Mologni L, Patrucco E, Gambacorti-Passerini C, Chiarle R. Tumor resistance against ALK targeted therapy-where it comes from and where it goes. Cancers (Basel). 2018;10(3). 10.3390/cancers10030062. PubMed PMC
Gristina V, La Mantia M, Iacono F, Galvano A, Russo A, Bazan V. The emerging therapeutic landscape of ALK inhibitors in non-small cell lung Cancer. Pharmaceuticals. 2020;13(12):474. doi: 10.3390/ph13120474. PubMed DOI PMC
Gambacorti-Passerini C, Mussolin L, Brugieres L. Abrupt relapse of ALK -positive lymphoma after discontinuation of Crizotinib. N Engl J Med. 2016;374(1):95–96. doi: 10.1056/NEJMc1511045. PubMed DOI
Staber PB, Vesely P, Haq N, et al. The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling. Blood. 2007;110(9):3374–3383. doi: 10.1182/blood-2007-02-071258. PubMed DOI
Laimer D, Dolznig H, Kollmann K, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med. 2012;18(11):1699–1704. doi: 10.1038/nm.2966. PubMed DOI
Staber PB, Kornauth C, Garces de los Fayos Alonso I, et al. Imatinib +/− Brentuximab Vedotin induces sustained complete remission in chemotherapy-resistant anaplastic large cell lymphoma expressing PDGFR. Blood. 2019;134(Supplement_1):4037. doi: 10.1182/blood-2019-129955. DOI
Chiarle R, Gong JZ, Guasparri I, et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood. 2003;101(5):1919–1927. doi: 10.1182/blood-2002-05-1343. PubMed DOI
Sawada S. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell. 1994;77(6):917–929. doi: 10.1016/0092-8674(94)90140-6. PubMed DOI
Schmahl J, Rizzolo K, Soriano P. The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Dev. 2008;22(23):3255–3267. doi: 10.1101/gad.1723908. PubMed DOI PMC
Zimmerman MW, Liu Y, He S, et al. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov. 2018;8(3):320–335. doi: 10.1158/2159-8290.CD-17-0993. PubMed DOI PMC
Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117(3):823–834. doi: 10.1172/JCI26833. PubMed DOI PMC
Redl E, Sheibani-Tezerji R, Cardona CDJ, et al. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance. 2021;4(2):1–22. doi: 10.26508/LSA.202000794. PubMed DOI PMC
Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: a Cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6. doi: 10.1016/S1476-5586(04)80047-2. PubMed DOI PMC
Hassler MR, Pulverer W, Lakshminarasimhan R, et al. Insights into the pathogenesis of anaplastic large-cell lymphoma through genome-wide DNA methylation profiling. Cell Rep. 2016;17(2):596–608. doi: 10.1016/j.celrep.2016.09.018. PubMed DOI PMC
Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene. 2002;21(7):1038–1047. doi: 10.1038/sj.onc.1205152. PubMed DOI
Kanai T, Seki S, Jenks JA, et al. Identification of STAT5A and STAT5B Target Genes in Human T Cells. PLoS One. 2014;9(1):e86790. doi: 10.1371/journal.pone.0086790. PubMed DOI PMC
Kollmann S, Grausenburger R, Klampfl T, et al. A STAT5B-CD9 axis determines self-renewal in hematopoietic and leukemic stem cells. Blood. 2021. 10.1182/blood.2021010980. PubMed PMC
Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V. STAT5A and STAT5B—twins with different personalities in hematopoiesis and leukemia. Cancers (Basel). 2019;11(11). 10.3390/cancers11111726. PubMed PMC
Wingelhofer B, Maurer B, Heyes EC, et al. Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia. 2018. 10.1038/s41375-017-0005-9. PubMed PMC
Knörr F, Damm-Welk C, Ruf S, et al. Blood cytokine concentrations in pediatric patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2018;103(3):477–485. doi: 10.3324/haematol.2017.177972. PubMed DOI PMC
Boulland M-L, Meignin V, Leroy-Viard K, et al. Human Interleukin-10 expression in T/natural killer-cell lymphomas. Am J Pathol. 1998;153(4):1229–1237. doi: 10.1016/S0002-9440(10)65667-2. PubMed DOI PMC
Fielding CA. Interleukin-19: a new target to aim for? Rheumatology. 2012;51(3):399–400. doi: 10.1093/rheumatology/ker174. PubMed DOI
Hofmann S, Möller J, Rauen T, et al. Dynamic CpG-DNA methylation of Il10 and Il19 in CD4+ T lymphocytes and macrophages: effects on tissue-specific gene expression. Klin Pädiatrie. 2012;224(02):53–60. doi: 10.1055/s-0031-1291359. PubMed DOI
Jordan W, Eskdale J, Boniotto M, et al. Human IL-19 regulates immunity through auto-induction of IL-19 and production of IL-10. Eur J Immunol. 2005;35(5):1576–1582. doi: 10.1002/eji.200425317. PubMed DOI
Lobello C, Tichy B, Bystry V, et al. STAT3 and TP53 mutations associate with poor prognosis in anaplastic large cell lymphoma. Leukemia. 2021;35(5):1500–1505. doi: 10.1038/s41375-020-01093-1. PubMed DOI PMC
Nieborowska-Skorska M, Slupianek A, Xue L, et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/ anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 2001;61(17):6517–6523. PubMed
Pham HTT, Maurer B, Prchal-Murphy M, et al. STAT5B N642H is a driver mutation for T cell neoplasia. J Clin Invest. 2018;128(1):387–401. doi: 10.1172/JCI94509. PubMed DOI PMC
Kollmann S, Grundschober E, Maurer B, et al. Twins with different personalities: STAT5B—but not STAT5A—has a key role in BCR/ABL-induced leukemia. Leukemia. 2019;33(7):1583–1597. doi: 10.1038/s41375-018-0369-5. PubMed DOI PMC
Maurer B, Nivarthi H, Wingelhofer B, et al. High activation of STAT5A drives peripheral T-cell lymphoma and leukemia. Haematologica. 2020;105(2):435–447. doi: 10.3324/haematol.2019.216986. PubMed DOI PMC
Wingelhofer B, Neubauer HA, Valent P, et al. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia. 2018. 10.1038/s41375-018-0117-x. PubMed PMC
Orlova A, Wagner C, De Araujo ED, et al. Direct targeting options for STAT3 and STAT5 in cancer. Cancers (Basel). 2019;11(12):1–16. doi: 10.3390/cancers11121930. PubMed DOI PMC
Menotti M, Ambrogio C, Cheong T, et al. Wiskott–Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med. 2019;25(1):130–140. doi: 10.1038/s41591-018-0262-9.Wiskott. PubMed DOI PMC
Li P, Mitra S, Spolski R, et al. STAT5-mediated chromatin interactions in superenhancers activate IL-2 highly inducible genes: functional dissection of the Il2ra gene locus. Proc Natl Acad Sci. 2017;114(46):12111–12119. doi: 10.1073/pnas.1714019114. PubMed DOI PMC
Park HJ, Li J, Hannah R, et al. Cytokine-induced megakaryocytic differentiation is regulated by genome-wide loss of a <scp>uSTAT</scp> transcriptional program. EMBO J. 2016;35(6):580–594. doi: 10.15252/embj.201592383. PubMed DOI PMC
Jain RK, Lahdenranta J, Fukumura D. Targeting PDGF signaling in carcinoma-associated fibroblasts controls cervical Cancer in mouse model. PLoS Med. 2008;5(1):e24. doi: 10.1371/journal.pmed.0050024. PubMed DOI PMC
Mathew P, Thall PF, Bucana CD, et al. Platelet-derived growth factor receptor inhibition and chemotherapy for castration-resistant prostate Cancer with bone metastases. Clin Cancer Res. 2007;13(19):5816–5824. doi: 10.1158/1078-0432.CCR-07-1269. PubMed DOI
Mohanty SK, Yagiz K, Pradhan D, et al. STAT3 and STAT5A are potential therapeutic targets in castration-resistant prostate cancer. Oncotarget. 2017;8(49):85997–86010. doi: 10.18632/oncotarget.20844. PubMed DOI PMC
Morgan EL, Macdonald A. JAK2 inhibition impairs proliferation and Sensitises cervical Cancer cells to cisplatin-induced cell death. Cancers (Basel) 2019;11(12):1934. doi: 10.3390/cancers11121934. PubMed DOI PMC
Liao W, Lin J-X, Wang L, Li P, Leonard WJ. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol. 2011;12(6):551–559. doi: 10.1038/ni.2030. PubMed DOI PMC
Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Publ Gr. 2014;11. 10.1038/nmeth.3047. PubMed PMC
Shah RR, Cholewa-Waclaw J, Davies FCJ, Paton KM, Chaligne R, Heard E, Abbott CM, Bird AP. Efficient and versatile CRISPR engineering of human neurons in culture to model neurological disorders. Wellcome Open Res. 2016;1:13. 10.12688/wellcomeopenres.10011.1. PubMed PMC
Lagger S, Meunier D, Mikula M, Brunmeir R, Schlederer M, Artaker M, Pusch O, Egger G, Hagelkruys A, Mikulits W, Weitzer G, Muellner EW, Susani M, Kenner L, Seiser C. Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans. EMBO J. 2010;29(23):3992–4007. 10.1038/emboj.2010.264. PubMed PMC