Footshock-induced activation of the claustrum-entorhinal cortical pathway in freely moving mice
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
36047724
PubMed Central
PMC9841810
DOI
10.33549/physiolres.934899
PII: 934899
Knihovny.cz E-resources
- MeSH
- Entorhinal Cortex * physiology MeSH
- Claustrum * MeSH
- Mice MeSH
- Neurons physiology MeSH
- Fear MeSH
- Calcium MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Calcium MeSH
Footshock is frequently used as an unconditioned stimulus in fear conditioning behavior studies. The medial entorhinal cortex (MEC) contributes to fear learning and receives neuronal inputs from the claustrum. However, whether footshocks can induce a neuronal response in claustrum-MEC (CLA-MEC) projection remains unknown. Here, we combined fiber-based Ca2+ recordings with a retrograde AAV labeling method to investigate neuronal responses of MEC-projecting claustral neurons to footshock stimulation in freely moving mice. We achieved successful Ca2+ recordings in both anesthetized and freely exploring mice. We found that footshock stimulation reliably induced neuronal responses to MEC-projecting claustral neurons. Therefore, the footshock-induced response detected in the CLA-MEC projection suggests its potential role in fear processin.
See more in PubMed
Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16:317–331. doi: 10.1038/nrn3945. PubMed DOI
Garcia R. Neurobiology of fear and specific phobias. Learn Mem. 2017;24:462–471. doi: 10.1101/lm.044115.116. PubMed DOI PMC
LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–184. doi: 10.1146/annurev.neuro.23.1.155. PubMed DOI
LeDoux J. The amygdala. Curr Biol. 2007;17:R868–R874. doi: 10.1016/j.cub.2007.08.005. PubMed DOI
Wahlstrom KL, Huff ML, Emmons EB, Freeman JH, Narayanan NS, McIntyre CK, LaLumiere RT. Basolateral amygdala inputs to the medial entorhinal cortex selectively modulate the consolidation of spatial and contextual learning. J Neurosci. 2018;38:2698–2712. doi: 10.1523/JNEUROSCI.2848-17.2018. PubMed DOI PMC
Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106:274–285. doi: 10.1037/0735-7044.106.2.274. PubMed DOI
Jackson J, Smith JB, Lee AK. The anatomy and physiology of claustrum-cortex interactions. Annu Rev Neurosci. 2020;43:231–247. doi: 10.1146/annurev-neuro-092519-101637. PubMed DOI
Smith JB, Lee AK, Jackson J. The claustrum. Curr Biol. 2020;30:R1401–R1406. doi: 10.1016/j.cub.2020.09.069. PubMed DOI
Kitanishi T, Matsuo N. Organization of the claustrum-to-entorhinal cortical connection in mice. J Neurosci. 2017;37:269–280. doi: 10.1523/JNEUROSCI.1360-16.2016. PubMed DOI PMC
Zingg B, Dong H-W, Tao HW, Zhang LI. Input-output organization of the mouse claustrum. J Comp Neurol. 2018;526:2428–2443. doi: 10.1002/cne.24502. PubMed DOI PMC
Narikiyo K, Mizuguchi R, Ajima A, Shiozaki M, Hamanaka H, Johansen JP, Mori K, Yoshihara Y. The claustrum coordinates cortical slow-wave activity. Nat Neurosci. 2020;23:741–753. doi: 10.1038/s41593-020-0625-7. PubMed DOI
Anikeeva P, Andalman AS, Witten I, Warden M, Goshen I, Grosenick L, Gunaydin LA, Frank LM, Deisseroth K. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci. 2011;15:163–170. doi: 10.1038/nn.2992. PubMed DOI PMC
Stark E, Koos T, Buzsaki G. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J Neurophysiol. 2012;108:349–363. doi: 10.1152/jn.00153.2012. PubMed DOI PMC
Chevée M, Finkel EA, Kim SJ, O'Connor DH, Brown SP. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron. 2022;110:486–501.e487. doi: 10.1016/j.neuron.2021.11.013. PubMed DOI PMC
Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248:73–76. doi: 10.1126/science.2321027. PubMed DOI
Yuste R, Denk W. Dendritic spines as basic functional units of neuronal integration. Nature. 1995;375:682–684. doi: 10.1038/375682a0. PubMed DOI
Adelsberger H, Garaschuk O, Konnerth A. Cortical calcium waves in resting newborn mice. Nat Neurosci. 2005;8:988–990. doi: 10.1038/nn1502. PubMed DOI
Qin H, Fu L, Hu B, Liao X, Lu J, He W, Liang S, et al. A visual-cue-dependent memory circuit for place navigation. Neuron. 2018;99:47–55.e44. doi: 10.1016/j.neuron.2018.05.021. PubMed DOI PMC
White MG, Panicker M, Mu C, Carter AM, Roberts BM, Dharmasri PA, Mathur BN. Anterior cingulate cortex input to the claustrum is required for top-down action control. Cell Rep. 2018;22:84–95. doi: 10.1016/j.celrep.2017.12.023. PubMed DOI PMC
White MG, Mu C, Qadir H, Madden MB, Zeng H, Mathur BN. The mouse claustrum is required for optimal behavioral performance under high cognitive demand. Biol Psychiatry. 2020;88:719–726. doi: 10.1016/j.biopsych.2020.03.020. PubMed DOI PMC
Zhang Q, Yao J, Guang Y, Liang S, Guan J, Qin H, Liao X, et al. Locomotion-related population cortical Ca(2+) transients in freely behaving mice. Front Neural Circuits. 2017;11:24. doi: 10.3389/fncir.2017.00024. PubMed DOI PMC
Qin H, Lu J, Jin W, Chen X, Fu L. Multichannel fiber photometry for mapping axonal terminal activity in a restricted brain region in freely moving mice. Neurophotonics. 2019;6:035011. doi: 10.1117/1.NPh.6.3.035011. PubMed DOI PMC
Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295–300. doi: 10.1038/nature12354. PubMed DOI PMC
Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, et al. A designer aav variant permits efficient retrograde access to projection neurons. Neuron. 2016;92:372–382. doi: 10.1016/j.neuron.2016.09.021. PubMed DOI PMC
Luczak A, Bartho P, Marguet SL, Buzsaki G, Harris KD. Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci U S A. 2007;104:347–352. doi: 10.1073/pnas.0605643104. PubMed DOI PMC
Stroh A, Adelsberger H, Groh A, Ruhlmann C, Fischer S, Schierloh A, Deisseroth K, Konnerth A. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron. 2013;77:1136–1150. doi: 10.1016/j.neuron.2013.01.031. PubMed DOI
Adelsberger H, Grienberger C, Stroh A, Konnerth A. In vivo calcium recordings and channelrhodopsin-2 activation through an optical fiber. Cold Spring Harb Protoc. 2014;2014 doi: 10.1101/pdb.prot084145. PubMed DOI
Zhang K, Förster R, He W, Liao X, Li J, Yang C, Qin H, et al. Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat Neurosci. 2021;24:1686–1698. doi: 10.1038/s41593-021-00949-8. PubMed DOI
Liu J, Wu R, Johnson B, Vu J, Bass C, Li J-X. The claustrum-prefrontal cortex pathway regulates impulsive-like behavior. J Neurosci. 2019;39:10071–10080. doi: 10.1523/JNEUROSCI.1005-19.2019. PubMed DOI PMC
Terem A, Gonzales BJ, Peretz-Rivlin N, Ashwal-Fluss R, Bleistein N, Del Mar Reus-Garcia M, Mukherjee D, Groysman M, Citri A. Claustral neurons projecting to frontal cortex mediate contextual association of reward. Curr Biol. 2020;30:3522–3532.e3526. doi: 10.1016/j.cub.2020.06.064. PubMed DOI
Atlan G, Terem A, Peretz-Rivlin N, Sehrawat K, Gonzales BJ, Pozner G, Tasaka G-I, et al. The claustrum supports resilience to distraction. Curr Biol. 2018;28:2752–2762.e2757. doi: 10.1016/j.cub.2018.06.068. PubMed DOI PMC
Jackson J, Karnani MM, Zemelman BV, Burdakov D, Lee AK. Inhibitory control of prefrontal cortex by the claustrum. Neuron. 2018;99:1029–1039.e1024. doi: 10.1016/j.neuron.2018.07.031. PubMed DOI PMC