The IL-20 Cytokine Family in Rheumatoid Arthritis and Spondyloarthritis

. 2018 ; 9 () : 2226. [epub] 20180925

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30319661

This review describes the IL-20 family of cytokines in rheumatoid arthritis (RA) and spondyloartrhitits (SpA) including psoriatic arthritis. The IL-20 receptor (R) cytokines IL-19, IL-20, and IL-24 are produced in both the peripheral blood and the synovial joint and are induced by Toll-like receptor ligands and autoantibody-associated immune complexes in monocytes. IL-19 seems to have anti-inflammatory functions in arthritis. In contrast, IL-20 and IL-24 increase the production of proinflammatory molecules such as monocyte chemoattractant protein 1 and are associated with bone degradation and radiographic progression. IL-22 is also associated with progression of bone erosions. This suggests that the IL-22RA1 subunit shared by IL-20, IL-22, and IL-24 is important for bone homeostasis. In line with this, the IL-22RA1 has been found on preosteoclasts in early RA. IL-26 is produced in high amounts by myofibroblasts and IL-26 stimulation of monocytes is an important inducer of Th17 cells in RA. This indicates a role for IL-26 as an important factor in the interactions between resident synovial cells and infiltrating leukocytes. Clinical trials that investigate inhibitors of IL-20 (fletikumab) and IL-22 (fezakinumab) in psoriasis and RA have been terminated. Instead, it seems that the strategy for modulating the IL-20 cytokine family should take the overlap in cellular sources and effector mechanisms into account. The redundancy encourages inhibition of more than one cytokine or one of the shared receptors. All IL-20 family members utilize the Janus kinase signaling pathway and are therefore potentially inhibited by drugs targeting these enzymes. Effects and adverse effects in ongoing clinical trials with inhibitors of IL-22 and the IL-22RA1 subunit and recombinant IL-22 fusion proteins will possibly provide important information about the IL-20 subfamily of cytokines in the future.

Zobrazit více v PubMed

Scott DL, Wolfe F, Huizinga TWJ. Rheumatoid arthritis. Lancet (2010) 376:1094–108. 10.1016/S0140-6736(10)60826-4 PubMed DOI

Dougados M, Baeten D. Spondyloarthritis. Lancet (2011) 377:2127–37. 10.1016/S0140-6736(11)60071-8 PubMed DOI

Lories RJ, Baeten DLP. Differences in pathophysiology between rheumatoid arthritis and ankylosing spondylitis. Clin Exp Rheumatol. (2009) 27:S10–4. PubMed

Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. (2012) 8:656–64. 10.1038/nrrheum.2012.153 PubMed DOI PMC

Goldring SR. Osteoimmunology and bone homeostasis: relevance to spondyloarthritis. Curr Rheumatol Rep. (2013) 15:342–6. 10.1007/s11926-013-0342-2 PubMed DOI PMC

Will R, Palmer R, Bhalla AK, Ring F, Calin A. Osteoporosis in early ankylosing spondylitis: a primary pathological event? Lancet (1989) 2:1483–5. PubMed

Burmester GR, Feist E, Dörner T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. (2014) 10:77–88. 10.1038/nrrheum.2013.168 PubMed DOI

Taylor PC. Developing anti-TNF and biologic agents. Rheumatology (2011) 50:1351–3. 10.1093/rheumatology/ker235 PubMed DOI

Choy EH, Kavanaugh AF, Jones SA. The problem of choice: current biologic agents and future prospects in RA. Nat Rev Rheumatol. (2013) 9:154–63. 10.1038/nrrheum.2013.8 PubMed DOI

Hofmann SR, Rösen-Wolff A, Tsokos GC, Hedrich CM. Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin Immunol. (2012) 143:116–27. 10.1016/j.clim.2012.02.005 PubMed DOI

Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines - from host defence to tissue homeostasis. Nat Rev Immunol. (2014) 14:783–95. 10.1038/nri3766 PubMed DOI

Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol. (2001) 167:3545–9. 10.4049/jimmunol.167.7.3545 PubMed DOI

Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, West J, et al. . Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem. (2002) 277:47517–23. 10.1074/jbc.M205114200 PubMed DOI

Logsdon NJ, Deshpande A, Harris BD, Rajashankar KR, Walter MR. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc Natl Acad Sci USA. (2012) 109:12704–9. 10.1073/pnas.1117551109 PubMed DOI PMC

Kragstrup TW, Otkjaer K, Holm C, Jørgensen A, Hokland M, Iversen L, et al. . The expression of IL-20 and IL-24 and their shared receptors are increased in rheumatoid arthritis and spondyloarthropathy. Cytokine (2008) 41:16–23. 10.1016/j.cyto.2007.10.004 PubMed DOI

Hsu Y-H, Li H-H, Hsieh M-Y, Liu M-F, Huang K-Y, Chin L-S, et al. . Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum. (2006) 54:2722–33. 10.1002/art.22039 PubMed DOI

Sakurai N, Kuroiwa T, Ikeuchi H, Hiramatsu N, Maeshima A, Kaneko Y, et al. . Expression of IL-19 and its receptors in RA: potential role for synovial hyperplasia formation. Rheumatology (2008) 47:815–20. 10.1093/rheumatology/ken061 PubMed DOI

Šenolt L, Prajzlerová K, Hulejová H, Šumová B, Filková M, Veigl D, et al. . Interleukin-20 is triggered by TLR ligands and associates with disease activity in patients with rheumatoid arthritis. Cytokine (2017) 97:187–92. 10.1016/j.cyto.2017.06.009 PubMed DOI

Scrivo R, Conigliaro P, Riccieri V, Di Franco M, Alessandri C, Spadaro A, et al. . Distribution of interleukin-10 family cytokines in serum and synovial fluid of patients with inflammatory arthritis reveals different contribution to systemic and joint inflammation. Clin Exp Immunol. (2015) 179:300–8. 10.1111/cei.12449 PubMed DOI PMC

Valentina M, Jan F, Peder NL, Bo Z, Hongjie D, Pernille K. Cytokine detection and simultaneous assessment of rheumatoid factor interference in human serum and synovial fluid using high-sensitivity protein arrays on plasmonic gold chips. BMC Biotechnol. (2015) 15:73. 10.1186/s12896-015-0186-0 PubMed DOI PMC

Wolk K, Kunz S, Asadullah K, Sabat R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol. (2002) 168:5397–402. 10.4049/jimmunol.168.11.5397 PubMed DOI

Nagalakshmi ML, Murphy E, McClanahan T, de Waal Malefyt R. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int Immunopharmacol. (2004) 4:577–92. 10.1016/j.intimp.2004.01.007 PubMed DOI

Kragstrup TW, Andersen T, Holm C, Schiøttz-Christensen B, Jurik AG, Hvid M, et al. . Toll-like receptor 2 and 4 induced interleukin-19 dampens immune reactions and associates inversely with spondyloarthritis disease activity. Clin Exp Immunol. (2015) 180:233–42. 10.1111/cei.12577 PubMed DOI PMC

Kragstrup TW, Andersen MN, Schiøttz-Christensen B, Jurik AG, Hvid M, Deleuran B. Increased interleukin (IL)-20 and IL-24 target osteoblasts and synovial monocytes in spondyloarthritis. Clin Exp Immunol. (2017) 189:342–51. 10.1111/cei.12973 PubMed DOI PMC

Alanärä T, Karstila K, Moilanen T, Silvennoinen O, Isomäki P. Expression of IL-10 family cytokines in rheumatoid arthritis: elevated levels of IL-19 in the joints. Scand J Rheumatol. (2010) 39:118–26. 10.3109/03009740903170823 PubMed DOI

Oktayoglu P, Em S, Tahtasiz M, Bozkurt M, Ucar D, Yazmalar L, et al. . Elevated serum levels of high mobility group box protein 1 (HMGB1) in patients with ankylosing spondylitis and its association with disease activity and quality of life. Rheumatol Int. (2013) 33:1327–31. 10.1007/s00296-012-2578-y PubMed DOI

Duruöz MT, Turan Y, Cerrahoglu L, Isbilen B. Serum hyaluronic acid levels in patients with ankylosing spondylitis. Clin Rheumatol. (2008) 27:621–6. 10.1007/s10067-007-0757-0 PubMed DOI

Goh FG, Midwood KS. Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (2012) 51:7–23. 10.1093/rheumatology/ker257 PubMed DOI

Huang Q-Q, Pope RM. The role of Toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep. (2009) 11:357–64. 10.1007/s11926-009-0051-z PubMed DOI PMC

Beyer C, Distler JHW. Changing paradigms in spondylarthritis: the myofibroblast signature. Arthritis Rheum. (2012) 65:24–7. 10.1002/art.37703 PubMed DOI

Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. (2010) 10:826–37. 10.1038/nri2873 PubMed DOI PMC

Kragstrup TW, Greisen SR, Nielsen MA, Rhodes C, Stengaard-Pedersen K, Hetland ML, et al. . The interleukin-20 receptor axis in early rheumatoid arthritis: novel links between disease-associated autoantibodies and radiographic progression. Arthritis Res Ther. (2016) 18:61. 10.1186/s13075-016-0964-7 PubMed DOI PMC

Liao S-C, Cheng Y-C, Wang Y-C, Wang C-W, Yang S-M, Yu C-K, et al. . IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol. (2004) 173:6712–8. 10.4049/jimmunol.173.11.6712 PubMed DOI

Jordan WJ, Eskdale J, Boniotto M, Lennon GP, Peat J, Campbell JDM, et al. . Human IL-19 regulates immunity through auto-induction of IL-19 and production of IL-10. Eur J Immunol. (2005) 35:1576–82. 10.1002/eji.200425317 PubMed DOI

Oral HB, Kotenko SV, Yilmaz M, Mani O, Zumkehr J, Blaser K, et al. . Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26. Eur J Immunol. (2006) 36:380–8. 10.1002/eji.200425523 PubMed DOI

Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S, Garo E, et al. . IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLoS Biol. (2012) 10:e1001395. 10.1371/journal.pbio.1001395 PubMed DOI PMC

Hoffman C, Park S-H, Daley E, Emson C, Louten J, Sisco M, et al. . Interleukin-19: a constituent of the regulome that controls antigen presenting cells in the lungs and airway responses to microbial products. PLoS ONE (2011) 6:e27629. 10.1371/journal.pone.0027629 PubMed DOI PMC

Gallagher G, Eskdale J, Jordan W, Peat J, Campbell J, Boniotto M, et al. . Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses. Int Immunopharmacol. (2004) 4:615–26. 10.1016/j.intimp.2004.01.005 PubMed DOI

Buzas K, Oppenheim JJ, Zack Howard OM. Myeloid cells migrate in response to IL-24. Cytokine (2011) 55:429–34. 10.1016/j.cyto.2011.05.018 PubMed DOI PMC

Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S, et al. . Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell (2001) 104:9–19. 10.1016/S0092-8674(01)00187-8 PubMed DOI

Kõks S, Kingo K, Rätsep R, Karelson M, Silm H, Vasar E. Combined haplotype analysis of the interleukin-19 and−20 genes: relationship to plaque-type psoriasis. Genes Immun. (2004) 5:662–7. 10.1038/sj.gene.6364141 PubMed DOI

He M, Liang P. IL-24 transgenic mice: in vivo evidence of overlapping functions for IL-20, IL-22, and IL-24 in the epidermis. J Immunol. (2010) 184:1793–8. 10.4049/jimmunol.0901829 PubMed DOI

Wei C-C, Chen W-Y, Wang Y-C, Chen P-J, Lee JY-Y, Wong T-W, et al. . Detection of IL-20 and its receptors on psoriatic skin. Clin Immunol. (2005) 117:65–72. 10.1016/j.clim.2005.06.012 PubMed DOI

Otkjaer K, Kragballe K, Johansen C, Funding AT, Just H, Jensen UB, et al. . IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms. J Invest Dermatol. (2007) 127:1326–36. 10.1038/sj.jid.5700713 PubMed DOI

Otkjaer K, Kragballe K, Funding AT, Clausen JT, Noerby PL, Steiniche T, et al. . The dynamics of gene expression of interleukin-19 and interleukin-20 and their receptors in psoriasis. Br J Dermatol. (2005) 153:911–8. 10.1111/j.1365-2133.2005.06800.x PubMed DOI

Kunz S, Wolk K, Witte E, Witte K, Doecke W-D, Volk H-D, et al. . Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs. Exp Dermatol. (2006) 15:991–1004. 10.1111/j.1600-0625.2006.00516.x PubMed DOI

Azuma Y-T, Matsuo Y, Kuwamura M, Yancopoulos GD, Valenzuela DM, Murphy AJ, et al. . Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflamm Bowel Dis. (2010) 16:1017–28. 10.1002/ibd.21151 PubMed DOI

Fonseca-Camarillo G, Furuzawa-Carballeda J, Llorente L, Yamamoto-Furusho JK. IL-10– and IL-20–expressing epithelial and inflammatory cells are increased in patients with ulcerative colitis. J Clin Immunol. (2013) 33:640–8. 10.1007/s10875-012-9843-4 PubMed DOI

Yamamoto-Furusho JK, De-León-Rendón JL, la Torre de MG, Alvarez-León E, Vargas-Alarcón G. Genetic polymorphisms of interleukin 20 (IL-20) in patients with ulcerative colitis. Immunol Lett. (2012) 149:50–3. 10.1016/j.imlet.2012.11.008 PubMed DOI

Camarillo GF, Furuzawa-Carballeda J, Martínez-Benítez B, Barreto-Zúñiga R, Yamamoto-Furusho JK. Role of the interleukin 24 in patients with ulcerative colitis. Inflamm Bowel Dis. (2011) 17:2209–10. 10.1002/ibd.21635 PubMed DOI

Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S, et al. . Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J Immunol. (2009) 183:687–95. 10.4049/jimmunol.0804169 PubMed DOI

McGovern A, Schoenfelder S, Martin P, Massey J, Duffus K, Plant D, et al. . Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome Biol. (2016) 17:212. 10.1186/s13059-016-1078-x PubMed DOI PMC

Wu J, Yang S, Yu D, Gao W, Liu X, Zhang K, et al. CRISPR/cas9 mediated knockout of an intergenic variant rs6927172 identified IL-20RA as a new risk gene for multiple autoimmune diseases. Genes Immun. (2018) 17:160 10.1038/s41435-018-0011-6 PubMed DOI

Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. . Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature (2014) 506:376–81. 10.1038/nature12873 PubMed DOI PMC

Omoyinmi E, Forabosco P, Hamaoui R, Bryant A, Hinks A, Ursu S, et al. . Association of the IL-10 gene family locus on chromosome 1 with Juvenile Idiopathic Arthritis (JIA). PLoS ONE (2012) 7:e47673. 10.1371/journal.pone.0047673 PubMed DOI PMC

Fife MS, Gutierrez A, Ogilvie EM, Stock CJW, Samuel JM, Thomson W, et al. . Novel IL10 gene family associations with systemic juvenile idiopathic arthritis. Arthritis Res Ther. (2006) 8:R148. 10.1186/ar2041 PubMed DOI PMC

Yamamoto-Furusho JK, Alvarez-León E, Fragoso JM, Gozalishvilli A, Vallejo M, Vargas-Alarcón G. Protective role of interleukin-19 gene polymorphisms in patients with ulcerative colitis. Hum Immunol. (2011) 72:1029–32. 10.1016/j.humimm.2011.08.013 PubMed DOI

England RN, Autieri MV. Anti-inflammatory effects of interleukin-19 in vascular disease. Int J Inflam. (2012) 2012:253583. 10.1155/2012/253583 PubMed DOI PMC

Li H-H, Cheng H-H, Sun K-H, Wei C-C, Li C-F, Chen W-C, et al. . Interleukin-20 targets renal mesangial cells and is associated with lupus nephritis. Clin Immunol. (2008) 129:277–85. 10.1016/j.clim.2008.07.006 PubMed DOI

Huang K-Y, Lin R-M, Chen W-Y, Lee C-L, Yan J-J, Chang M-S. IL-20 may contribute to the pathogenesis of human intervertebral disc herniation. Spine (2008) 33:2034–40. 10.1097/BRS.0b013e31817eb872 PubMed DOI

Poindexter NJ, Williams RR, Powis G, Jen E, Caudle AS, Chada S, et al. . IL-24 is expressed during wound repair and inhibits TGFalpha-induced migration and proliferation of keratinocytes. Exp Dermatol. (2010) 19:714–22. 10.1111/j.1600-0625.2010.01077.x PubMed DOI PMC

Bosanquet DC, Harding KG, Ruge F, Sanders AJ, Jiang WG. Expression of IL-24 and IL-24 receptors in human wound tissues and the biological implications of IL-24 on keratinocytes. Wound Repair Regen. (2012) 20:896–903. 10.1111/j.1524-475X.2012.00840.x PubMed DOI

Sa SM, Valdez PA, Wu J, Jung K, Zhong F, Hall L, et al. . The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol. (2007) 178:2229–40. 10.4049/jimmunol.178.4.2229 PubMed DOI

Komano Y, Nanki T, Hayashida K, Taniguchi K, Miyasaka N. Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Ther. (2006) 8:R152. 10.1186/ar2046 PubMed DOI PMC

Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity (2003) 19:71–82. 10.1016/S1074-7613(03)00174-2 PubMed DOI

Matsubara R, Kukita T, Ichigi Y, Takigawa I, Qu P-F, Funakubo N, Miyamoto H, Nonaka K, Kukita A. Characterization and identification of subpopulations of mononuclear preosteoclasts induced by TNF-α in combination with TGF-β in rats. PLoS ONE (2012) 7:e47930. 10.1371/journal.pone.0047930 PubMed DOI PMC

Hsu Y-H, Chen W-Y, Chan C-H, Wu C-H, Sun Z-J, Chang M-S. Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. J Exp Med. (2011) 208:1849–61. 10.1084/jem.20102234 PubMed DOI PMC

Hsu Y-H, Yang Y-Y, Huwang M-H, Weng Y-H, Jou I-M, Wu P-T, et al. . Anti-IL-20 monoclonal antibody inhibited inflammation and protected against cartilage destruction in murine models of osteoarthritis. PLoS ONE (2017) 12:e0175802. 10.1371/journal.pone.0175802 PubMed DOI PMC

Leng R-X, Pan H-F, Tao J-H, Ye D-Q. IL-19, IL-20 and IL-24: potential therapeutic targets for autoimmune diseases. Expert Opin Ther Targets (2011) 15:119–26. 10.1517/14728222.2011.534461 PubMed DOI

Lundblad MS, Overgaard RV, Göthberg M, Fjording MS, Watson E. Clinical pharmacokinetics of the anti-interleukin-20 monoclonal antibody NNC0109-0012 in healthy volunteers and patients with psoriasis or rheumatoid arthritis. Adv Ther. (2015) 1–11. 10.1007/s12325-015-0191-7 PubMed DOI

Gottlieb AB, Krueger JG, Sandberg Lundblad M, Göthberg M, Skolnick BE. First-in-human, phase 1, randomized, dose-escalation trial with recombinant anti-IL-20 monoclonal antibody in patients with psoriasis. PLoS ONE (2015) 10:e0134703. 10.1371/journal.pone.0134703 PubMed DOI PMC

Šenolt L, Leszczynski P, Dokoupilová E, Göthberg M, Valencia X, Hansen BB, et al. . Efficacy and Safety of Anti-Interleukin-20 Monoclonal Antibody in Patients With Rheumatoid Arthritis: A Randomized Phase IIa Trial. Arthrit Rheumatol. (2015) 67:1438–48. 10.1002/art.39083 PubMed DOI

Guttman-Yassky E, Brunner PM, Neumann AU, Khattri S, Pavel AB, Malik K, et al. . Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J Am Acad Dermatol. (2018) 78:872–881.e6. 10.1016/j.jaad.2018.01.016 PubMed DOI PMC

Rothenberg ME, Wang Y, Lekkerkerker A, Danilenko DM, Maciuca R, Erickson R, et al. Randomized phase I healthy volunteer study of UTTR1147A (IL-22Fc): a potential therapy for epithelial injury. Clin Pharmacol Ther. (2018) 33:747 10.1002/cpt.1164 PubMed DOI

Liu X, Zhou H, Huang X, Cui J, Long T, Xu Y, et al. . A broad blockade of signaling from the IL-20 family of cytokines potently attenuates collagen-induced arthritis. J Immunol. (2016) 197:3029–37. 10.4049/jimmunol.1600399 PubMed DOI

O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. (2015) 66:311–28. 10.1146/annurev-med-051113-024537 PubMed DOI PMC

van der Heijde D, Deodhar A, Wei JC, Drescher E, Fleishaker D, Hendrikx T, et al. . Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis. (2017) 76:1340–7. 10.1136/annrheumdis-2016-210322 PubMed DOI PMC

Mease P, Hall S, FitzGerald O, van der Heijde D, Merola JF, Avila-Zapata F, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. (2017) 377:1537–50. 10.1056/NEJMoa1615975 PubMed DOI

Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. (2009) 10:857–63. 10.1038/ni.1767 PubMed DOI

Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat Immunol. (2009) 10:864–71. 10.1038/ni.1770 PubMed DOI

Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, et al. . Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem. (2001) 276:2725–32. 10.1074/jbc.M007837200 PubMed DOI

Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, et al. . Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol. (2001) 166:7096–103. 10.4049/jimmunol.166.12.7096 PubMed DOI

Jones BC, Logsdon NJ, Walter MR. Structure of IL-22 bound to its high-affinity IL-22R1 chain. Structure (2008) 16:1333–44. 10.1016/j.str.2008.06.005 PubMed DOI PMC

Dumoutier L, Lejeune D, Colau D, Renauld JC. Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J Immunol. (2001) 166:7090–5. 10.4049/jimmunol.166.12.7090 PubMed DOI

Liang SC, Tan X-Y, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, et al. . Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. (2006) 203:2271–9. 10.1084/jem.20061308 PubMed DOI PMC

Støy S, Sandahl TD, Dige AK, Agnholt J, Rasmussen TK, Grønbæk H, et al. . Highest frequencies of interleukin-22-producing T helper cells in alcoholic hepatitis patients with a favourable short-term course. PLoS ONE (2013) 8:e55101. 10.1371/journal.pone.0055101 PubMed DOI PMC

Ikeuchi H, Kuroiwa T, Hiramatsu N, Kaneko Y, Hiromura K, Ueki K, et al. . Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum. (2005) 52:1037–46. 10.1002/art.20965 PubMed DOI

Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. . Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature (2003) 421:744–8. 10.1038/nature01355 PubMed DOI

Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. . IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. (2005) 201:233–40. 10.1084/jem.20041257 PubMed DOI PMC

Marijnissen RJ, Koenders MI, Smeets RL, Stappers MHT, Nickerson Nutter C, Joosten LAB, et al. . Increased expression of interleukin-22 by synovial Th17 cells during late stages of murine experimental arthritis is controlled by interleukin-1 and enhances bone degradation. Arthritis Rheum. (2011) 63:2939–48. 10.1002/art.30469 PubMed DOI

Sherlock JP, Joyce-Shaikh B, Turner SP, Chao C-C, Sathe M, Grein J, et al. . IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4–CD8– entheseal resident T cells. Nat Med. (2012) 18:1069–76. 10.1038/nm.2817 PubMed DOI

Wolk K, Haugen HS, Xu W, Witte E, Waggie K, Anderson M, et al. . IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med. (2009) 87:523–36. 10.1007/s00109-009-0457-0 PubMed DOI

Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, et al. . IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med. (2006) 203:2577–87. 10.1084/jem.20060244 PubMed DOI PMC

Wahl C, Müller W, Leithäuser F, Adler G, Oswald F, Reimann J, et al. . IL-20 receptor 2 signaling down-regulates antigen-specific T cell responses. J Immunol. (2009) 182:802–10. 10.4049/jimmunol.182.2.802 PubMed DOI

Mitra A, Raychaudhuri SK, Raychaudhuri SP. Functional role of IL-22 in psoriatic arthritis. Arthritis Res Ther. (2012) 14:R65. 10.1186/ar3781 PubMed DOI PMC

Kato-Kogoe N, Nishioka T, Kawabe M, Kataoka F, Yamanegi K, Yamada N, et al. . The promotional effect of IL-22 on mineralization activity of periodontal ligament cells. Cytokine (2012) 59:41–8. 10.1016/j.cyto.2012.03.024 PubMed DOI

da Rocha LF, Duarte ÂLBP, Dantas AT, Mariz HA, Pitta IDR, Galdino SL, et al. . Increased serum interleukin 22 in patients with rheumatoid arthritis and correlation with disease activity. J Rheumatol. (2012) 39:1320–5. 10.3899/jrheum.111027 PubMed DOI

Leipe J, Schramm MA, Grunke M, Baeuerle M, Dechant C, Nigg AP, et al. . Interleukin 22 serum levels are associated with radiographic progression in rheumatoid arthritis. Ann Rheum Dis. (2011) 70:1453–7. 10.1136/ard.2011.152074 PubMed DOI

Tang K-Y, Lickliter J, Huang Z-H, Xian Z-S, Chen H-Y, Huang C, et al. Safety, pharmacokinetics, and biomarkers of F-652, a recombinant human interleukin-22 dimer, in healthy subjects. Cell Mol Immunol. (2018) 13:21 10.1038/s41423-018-0029-8 PubMed DOI PMC

Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov. (2014) 13:21–38. 10.1038/nrd4176 PubMed DOI

Cotter DG, Schairer D, Eichenfield L. Emerging therapies for atopic dermatitis: JAK inhibitors. J Am Acad Dermatol. (2018) 78:S53–62. 10.1016/j.jaad.2017.12.019 PubMed DOI

Donnelly RP, Sheikh F, Dickensheets H, Savan R, Young HA, Walter MR. Interleukin-26: An IL-10-related cytokine produced by Th17 cells. Cytokine Growth Factor Rev. (2010) 21:393–401. 10.1016/j.cytogfr.2010.09.001 PubMed DOI PMC

Che KF, Tengvall S, Levänen B, Silverpil E, Smith ME, Awad M, et al. . Interleukin-26 in antibacterial host defense of human lungs. Effects on neutrophil mobilization. Am J Respir Crit Care Med. (2014) 190:1022–31. 10.1164/rccm.201404-0689OC PubMed DOI

Che KF, Kaarteenaho R, Lappi-Blanco E, Levänen B, Sun J, Wheelock Å, et al. . Interleukin-26 production in human primary bronchial epithelial cells in response to viral stimulation: modulation by Th17 cytokines. Mol Med. (2017) 23:1. 10.2119/molmed.2016.00064 PubMed DOI PMC

Heftdal LD, Andersen T, Jæhger D, Woetmann A, Østgård R, Kenngott EE, et al. . Synovial cell production of IL-26 induces bone mineralization in spondyloarthritis. J Mol Med. (2017) 95:779–87. 10.1007/s00109-017-1528-2 PubMed DOI

Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV, Anantha S, et al. . Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol. (2004) 172:2006–10. 10.4049/jimmunol.172.4.2006 PubMed DOI

Hör S, Pirzer H, Dumoutier L, Bauer F, Wittmann S, Sticht H, et al. . The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains. J Biol Chem. (2004) 279:33343–51. 10.1074/jbc.M405000200 PubMed DOI

Hsu Y-H, Chiu Y-S, Chen W-Y, Huang K-Y, Jou I-M, Wu P-T, et al. . Anti-IL-20 monoclonal antibody promotes bone fracture healing through regulating IL-20-mediated osteoblastogenesis. Sci Rep. (2016) 6:24339. 10.1038/srep24339 PubMed DOI PMC

Poli C, Augusto JF, Dauvé J, Adam C, Preisser L, Larochette V, et al. . IL-26 Confers proinflammatory properties to extracellular DNA. J Immunol. (2017) 198:3650–61. 10.4049/jimmunol.1600594 PubMed DOI

Meller S, Di Domizio J, Voo KS, Friedrich HC, Chamilos G, Ganguly D, et al. . T(H)17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat Immunol. (2015) 16:970–9. 10.1038/ni.3211 PubMed DOI PMC

Dambacher J, Beigel F, Zitzmann K, De Toni EN, Göke B, Diepolder HM, et al. . The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut (2009) 58:1207–17. 10.1136/gut.2007.130112 PubMed DOI

Silverberg MS, Cho JH, Rioux JD, McGovern DPB, Wu J, Annese V, et al. . Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet. (2009) 41:216–20. 10.1038/ng.275 PubMed DOI PMC

Padua D, Mahurkar-Joshi S, Law IKM, Polytarchou C, Vu JP, Pisegna JR, et al. . A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am J Physiol Gastrointest Liver Physiol. (2016) 311:G446–57. 10.1152/ajpgi.00212.2016 PubMed DOI PMC

Vandenbroeck K, Cunningham S, Goris A, Alloza I, Heggarty S, Graham C, et al. . Polymorphisms in the interferon-gamma/interleukin-26 gene region contribute to sex bias in susceptibility to rheumatoid arthritis. Arthritis Rheum. (2003) 48:2773–8. 10.1002/art.11236 PubMed DOI

Yeremenko N, Noordenbos T, Cantaert T, van Tok M, van de Sande M, Cañete JD, et al. Disease-specific and inflammation-independent stromal alterations in spondyloarthritis synovitis. Arthritis Rheum. (2012) 65:174–85. 10.1002/art.37704 PubMed DOI

LeBleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG, Woda C, et al. . Origin and function of myofibroblasts in kidney fibrosis. Nat Med. (2013) 19:1047–53. 10.1038/nm.3218 PubMed DOI PMC

Ohnuma K, Hatano R, Aune TM, Otsuka H, Iwata S, Dang NH, et al. . Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. J Immunol. (2015) 194:3697–712. 10.4049/jimmunol.1402785 PubMed DOI PMC

Fickenscher H, Pirzer H. Interleukin-26. Int Immunopharmacol. (2004) 4:609–13. 10.1016/j.intimp.2004.01.004 PubMed DOI

Tengvall S, Che KF, Lindén A. Interleukin-26: an emerging player in host defense and inflammation. J Innate Immun. (2016) 8:15–22. 10.1159/000434646 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Emerging therapies in rheumatoid arthritis: focus on monoclonal antibodies

. 2019 ; 8 () : . [epub] 20190830

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...