Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid36050189

Grantová podpora
R01 EB028316 NIBIB NIH HHS - United States
R37 CA224141 NCI NIH HHS - United States
R01 EB013433 NIBIB NIH HHS - United States
R01 EB025205 NIBIB NIH HHS - United States
T32 EB009653 NIBIB NIH HHS - United States
R01 CA227687 NCI NIH HHS - United States
R01 CA172787 NCI NIH HHS - United States

Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.

Centre of Excellence IT4Innovations Faculty of Information Technology Brno University of Technology Bozetechova 2 Brno 612 00 Czech Republic

Department of Applied Physics University of Eastern Finland 70211 Kuopio Finland

Department of Bioengineering Imperial College London Exhibition Road London SW7 2AZ United Kingdom

Department of Biomedical Engineering and Department of Electrical and Computer Engineering University of Utah Salt Lake City Utah 84112 USA

Department of Electrical Engineering Stanford University Stanford California 94305 USA

Department of Medical Physics and Biomedical Engineering University College London Gower Street London WC1E 6BT United Kingdom

Department of Radiology Stanford University Stanford California 94305 USA

Department of Surgical Biotechnology Division of Surgery and Interventional Science University College London London NW3 2PF United Kingdom

Earth Science and Engineering Department Imperial College London London United Kingdom

Foundation for Research on Information Technologies in Society Zurich Switzerland

Graduate Program in Acoustics The Pennsylvania State University University Park Pennsylvania 16802 USA

Institute for Mathematical and Computational Engineering School of Engineering and Faculty of Mathematics Pontificia Universidad Católica de Chile Santiago Chile

Institute of Geophysics Swiss Federal Institute of Technology Zürich Sonneggstrasse 5 8092 Zürich Switzerland

Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA and North Carolina State University Raleigh North Carolina 27695 USA

Physics for Medicine Paris National Institute of Health and Medical Research UMR 8063 Paris France

Radiology and Clinical Neurosciences Departments Cumming School of Medicine University of Calgary Calgary Alberta Canada

Technical University of Denmark Kongens Lyngby Denmark

Zobrazit více v PubMed

Elias W. J., Lipsman N., Ondo W. G., Ghanouni P., Kim Y. G., Lee W., Schwartz M., Hynynen K., Lozano A. M., Shah B. B., Huss D., Dallapiazza R. F., Gwinn R., Witt J., Ro S., Eisenberg H. M., Fishman P. S., Gandhi D., Halpern C. H., Chuang R., Butts Pauly K., Tierney T. S., Hayes M. T., Rees Cosgrove G., Yamaguchi T., Abe K., Taira T., and Chang J. W., “ A randomized trial of focused ultrasound thalamotomy for essential tremor,” N. Engl. J. Med. 375(8), 730–739 (2016).10.1056/NEJMoa1600159 PubMed DOI

Abrahao A., Meng Y., Llinas M., Huang Y., Hamani C., Mainprize T., Aubert I., Heyn C., Black S. E., Hynynen K., Lipsman N., and Zinman L., “ First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound,” Nat. Commun. 10(1), 4373 (2019).10.1038/s41467-019-12426-9 PubMed DOI PMC

Legon W., Sato T. F., Opitz A., Mueller J., Barbour A., Williams A., and Tyler W. J., “ Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans,” Nat. Neurosci. 17(2), 322–329 (2014).10.1038/nn.3620 PubMed DOI

Hynynen K. and Jolesz F. A., “ Demonstration of potential noninvasive ultrasound brain therapy through an intact skull,” Ultrasound Med. Biol. 24(2), 275–283 (1998).10.1016/S0301-5629(97)00269-X PubMed DOI

Bouchoux G., Bader K. B., Korfhagen J. J., Raymond J. L., Shivashankar R., Abruzzo T. A., and Holland C. K., “ Experimental validation of a finite-difference model for the prediction of transcranial ultrasound fields based on CT images,” Phys. Med. Biol. 57(23), 8005–8022 (2012).10.1088/0031-9155/57/23/8005 PubMed DOI PMC

Marquet F., Pernot M., Aubry J.-F., Montaldo G., Marsac L., Tanter M., and Fink M., “ Non-invasive transcranial ultrasound therapy based on a 3D CT scan: Protocol validation and in vitro results,” Phys. Med. Biol. 54(9), 2597–2613 (2009).10.1088/0031-9155/54/9/001 PubMed DOI

Dallapiazza R. F., Timbie K. F., Holmberg S., Gatesman J., Lopes M. B., Price R. J., Miller G. W., and Elias W. J., “ Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound,” J. Neurosurg. 128(3), 875–884 (2018).10.3171/2016.11.JNS16976 PubMed DOI PMC

Treeby B., “ Benchmark problems for transcranial ultrasound simulation: Intercomparison library (version 1.0) [computer code],” https://github.com/ucl-bug/transcranial-ultrasound-benchmarks (Last viewed August 11, 2022).

Gu J. and Jing Y., “ A modified mixed domain method for modeling acoustic wave propagation in strongly heterogeneous media,” J. Acoust. Soc. Am. 147(6), 4055–4068 (2020).10.1121/10.0001454 PubMed DOI PMC

See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0013426 for a table form of the model summaries given in Sec. III and summaries of the complete set of intercomparison results. SuppPub1.xlsx gives an alternate table form of the model summaries given in Sec. III. SuppPub2.zip provides summaries of the comparison results (including metrics, field plots, axial profiles, and difference plots) for each model compared against FOCUS (for benchmarks 1 and 2) and KWAVE (for benchmarks 1–9). The .zip file contains separate pdf files for each model and for each benchmark, as a well as a summary of the cross-comparison metrics. The raw data files and matlab codes to process the results are also freely available (Refs. 8 and 11). DOI

Aubry J.-F., Bates O., Boehm C., Butts Pauly K., Christensen D., Cueto C., Gelat P., Guasch L., Jaros J., Jing Y., Jones R., Li N., Marty P., Montanaro H., Neufeld E., Pichardo S., Pinton G., Pulkkinen A., Stanziola A., Thielscher A., Treeby B., and van 't Wout E., “ Benchmark problems for transcranial ultrasound simulation: Datasets for intercomparison of compressional wave models (version 1.0) [dataset],” Zenodo, 10.5281/zenodo.6020543 (2022). PubMed DOI PMC

Mueller J. K., Ai L., Bansal P., and Legon W., “ Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound,” J. Neural Eng. 14(6), 066012 (2017).10.1088/1741-2552/aa843e PubMed DOI

Clement G. T., White P. J., and Hynynen K., “ Enhanced ultrasound transmission through the human skull using shear mode conversion,” J. Acoust. Soc. Am. 115(3), 1356–1364 (2004).10.1121/1.1645610 PubMed DOI

Wang X.-D., Lin W.-J., Su C., and Wang X.-M., “ Influence of mode conversions in the skull on transcranial focused ultrasound and temperature fields utilizing the wave field separation method: A numerical study,” Chin. Phys. B 27(2), 024302 (2018).10.1088/1674-1056/27/2/024302 DOI

Younan Y., Deffieux T., Larrat B., Fink M., Tanter M., and Aubry J.-F., “ Influence of the pressure field distribution in transcranial ultrasonic neurostimulation,” Med. Phys. 40(8), 082902 (2013).10.1118/1.4812423 PubMed DOI

Robertson J. L., Cox B. T., Jaros J., and Treeby B. E., “ Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation,” J. Acoust. Soc. Am. 141(3), 1726–1738 (2017).10.1121/1.4976339 PubMed DOI

O'Neil H., “ Theory of focusing radiators,” J. Acoust. Soc. Am. 21(5), 516–526 (1949).10.1121/1.1906542 DOI

Fry F. J. and Barger J. E., “ Acoustical properties of the human skull,” J. Acoust. Soc. Am. 63(5), 1576–1590 (1978).10.1121/1.381852 PubMed DOI

Mast T. D., “ Empirical relationships between acoustic parameters in human soft tissues,” Acoust. Res. Lett. Online 1(2), 37–42 (2000).10.1121/1.1336896 DOI

Clement G. and Hynynen K., “ Correlation of ultrasound phase with physical skull properties,” Ultrasound Med. Biol. 28(5), 617–624 (2002).10.1016/S0301-5629(02)00503-3 PubMed DOI

Pichardo S., Sin V. W., and Hynynen K., “ Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls,” Phys. Med. Biol. 56(1), 219–250 (2011).10.1088/0031-9155/56/1/014 PubMed DOI PMC

Pinton G., Aubry J.-F., Bossy E., Muller M., Pernot M., and Tanter M., “ Attenuation, scattering, and absorption of ultrasound in the skull bone,” Med. Phys. 39(1), 299–307 (2011).10.1118/1.3668316 PubMed DOI

Pichardo S., Moreno-Hernández C., Drainville R. A., Sin V., Curiel L., and Hynynen K., “ A viscoelastic model for the prediction of transcranial ultrasound propagation: Application for the estimation of shear acoustic properties in the human skull,” Phys. Med. Biol. 62(17), 6938–6962 (2017).10.1088/1361-6560/aa7ccc PubMed DOI PMC

White P. J., Clement G. T., and Hynynen K., “ Longitudinal and shear mode ultrasound propagation in human skull bone,” Ultrasound Med. Biol. 32(7), 1085–1096 (2006).10.1016/j.ultrasmedbio.2006.03.015 PubMed DOI PMC

Webb T. D., Leung S. A., Ghanouni P., Dahl J. J., Pelc N. J., and Pauly K. B., “ Acoustic attenuation: Multifrequency measurement and relationship to CT and MR imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(5), 1532–1545 (2021).10.1109/TUFFC.2020.3039743 PubMed DOI PMC

McGough R. J., Samulski T. V., and Kelly J. F., “ An efficient grid sectoring method for calculations of the near-field pressure generated by a circular piston,” J. Acoust. Soc. Am. 115(5), 1942–1954 (2004).10.1121/1.1687835 PubMed DOI PMC

Chen D. and McGough R. J., “ A 2D fast near-field method for calculating near-field pressures generated by apodized rectangular pistons,” J. Acoust. Soc. Am. 124(3), 1526–1537 (2008).10.1121/1.2950081 PubMed DOI PMC

Kelly J. F. and McGough R. J., “ Transient fields generated by spherical shells in viscous media,” AIP Conf. Proc. 1113, 210–214 (2009).10.1063/1.3131415 DOI

Alexander S. L., Rafaels K., Gunnarsson C. A., and Weerasooriya T., “ Structural analysis of the frontal and parietal bones of the human skull,” J. Mech. Behav. Biomed. Mater. 90, 689–701 (2019).10.1016/j.jmbbm.2018.10.035 PubMed DOI

Hori H., Moretti G., Rebora A., and Crovato F., “ The thickness of human scalp: Normal and bald,” J. Invest. Dermatol. 58(6), 396–399 (1972).10.1111/1523-1747.ep12540633 PubMed DOI

Fonov V. S., Evans A. C., McKinstry R. C., Almli C., and Collins D., “ Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” NeuroImage 47(Suppl. 1), S39–S41 (2009).10.1016/S1053-8119(09)70884-5 DOI

Fonov V., Evans A. C., Botteron K., Almli C. R., McKinstry R. C., Collins D. L., and Brain Development Cooperative Group, “ Unbiased average age-appropriate atlases for pediatric studies,” NeuroImage 54(1), 313–327 (2011).10.1016/j.neuroimage.2010.07.033 PubMed DOI PMC

Nielsen J. D., Madsen K. H., Puonti O., Siebner H. R., Bauer C., Madsen C. G., Saturnino G. B., and Thielscher A., “ Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art,” NeuroImage 174, 587–598 (2018).10.1016/j.neuroimage.2018.03.001 PubMed DOI

Fang Q., “iso2mesh: a 3D surface and volumetric mesh generator for MATLAB/Octave,” http://iso2mesh.sourceforge.net (Last viewed August 11, 2022).

Fang Q. and Boas D. A., “ Tetrahedral mesh generation from volumetric binary and grayscale images,” in Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA (June 28–July 1, 2009), pp. 1142–1145.

Virieux J., “ P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method,” Geophysics 51(4), 889–901 (1986).10.1190/1.1442147 DOI

Levander A. R., “ Fourth-order finite-difference P-SV seismograms,” Geophysics 53(11), 1425–1436 (1988).10.1190/1.1442422 DOI

Bohlen T., “ Parallel 3-D viscoelastic finite difference seismic modelling,” Comput. Geosci. 28(8), 887–899 (2002).10.1016/S0098-3004(02)00006-7 DOI

Blanch J. O., Robertsson J. O., and Symes W. W., “ Modeling of a constant Q: Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique,” Geophysics 60(1), 176–184 (1995).10.1190/1.1443744 DOI

Moczo P., Kristek J., Vavrycuk V., Archuleta R. J., and Halada L., “ 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities,” Bull. Seismol. Soc. Am. 92(8), 3042–3066 (2002).10.1785/0120010167 DOI

Drainville R. A., Curiel L., and Pichardo S., “ Superposition method for modelling boundaries between media in viscoelastic finite difference time domain simulations,” J. Acoust. Soc. Am. 146(6), 4382–4401 (2019).10.1121/1.5139221 PubMed DOI

Collino F. and Tsogka C., “ Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media,” Geophysics 66(1), 294–307 (2001).10.1190/1.1444908 DOI

Pinton G. F., Dahl J., Rosenzweig S., and Trahey G. E., “ A heterogeneous nonlinear attenuating full-wave model of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(3), 474–488 (2009).10.1109/TUFFC.2009.1066 PubMed DOI PMC

Pinton G., “ A fullwave model of the nonlinear wave equation with multiple relaxations and relaxing perfectly matched layers for high-order numerical finite-difference solutions,” arXiv:2106.11476 (2021).

Courant R., Friedrichs K., and Lewy H., “ Über die partiellen differenzengleichungen der mathematischen physik” (“On the partial differential equations of mathematical physics”), Math. Ann. 100(1), 32–74 (1928).10.1007/BF01448839 DOI

Pulkkinen A., Werner B., Martin E., and Hynynen K., “ Numerical simulations of clinical focused ultrasound functional neurosurgery,” Phys. Med. Biol. 59(7), 1679–1700 (2014).10.1088/0031-9155/59/7/1679 PubMed DOI PMC

Vyas U. and Christensen D., “ Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(6), 1093–1100 (2012).10.1109/TUFFC.2012.2300 PubMed DOI

Almquist S., Parker D. L., and Christensen D. A., “ Rapid full-wave phase aberration correction method for transcranial high-intensity focused ultrasound therapies,” J. Ther. Ultrasound 4(1), 30 (2016).10.1186/s40349-016-0074-7 PubMed DOI PMC

Stanziola A., Arridge S. R., Cox B. T., and Treeby B. E., “ j-Wave: An open-source differentiable wave simulator,” arXiv:2207.01499 (2022).

Saad Y. and Schultz M. H., “ GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986).10.1137/0907058 DOI

Bermúdez A., Hervella-Nieto L., Prieto A., and Rodríguez R., “ An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems,” J. Comput. Phys. 223(2), 469–488 (2007).10.1016/j.jcp.2006.09.018 DOI

Wise E. S., Cox B., Jaros J., and Treeby B. E., “ Representing arbitrary acoustic source and sensor distributions in Fourier collocation methods,” J. Acoust. Soc. Am. 146(1), 278–288 (2019).10.1121/1.5116132 PubMed DOI

Stanziola A., Arridge S. R., Cox B. T., and Treeby B. E., “ A research framework for writing differentiable PDE discretizations in JAX,” arXiv:2111.05218 (2021).

Bradbury J., Frostig R., Hawkins P., Johnson M. J., Leary C., Maclaurin D., Necula G., Paszke A., VanderPlas J., Wanderman-Milne S., and Zhang Q., “ JAX: Composable transformations of Python+NumPy programs,” http://github.com/google/jax (Last viewed August 11, 2022).

Treeby B. E. and Cox B. T., “ k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).10.1117/1.3360308 PubMed DOI

Treeby B. E., Jaros J., Rendell A. P., and Cox B., “ Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).10.1121/1.4712021 PubMed DOI

Cox B. and Treeby B., “ Accurate time-varying sources in k-space pseudospectral time domain acoustic simulations,” in Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan (October 22–25, 2018), pp. 1–4.

Treeby B. E., Wise E. S., Kuklis F., Jaros J., and Cox B., “ Nonlinear ultrasound simulation in an axisymmetric coordinate system using a k-space pseudospectral method,” J. Acoust. Soc. Am. 148(4), 2288–2300 (2020).10.1121/10.0002177 PubMed DOI

Jaros J., Rendell A. P., and Treeby B. E., “ Full-wave nonlinear ultrasound simulation on distributed clusters with applications in high-intensity focused ultrasound,” Int. J. High Perform. Comput. Appl. 30(2), 137–155 (2016).10.1177/1094342015581024 DOI

Gu J. and Jing Y., “ mSOUND: An open source toolbox for modeling acoustic wave propagation in heterogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(5), 1476–1486 (2021).10.1109/TUFFC.2021.3051729 PubMed DOI PMC

van 't Wout E., Gélat P., Betcke T., and Arridge S., “ A fast boundary element method for the scattering analysis of high-intensity focused ultrasound,” J. Acoust. Soc. Am. 138(5), 2726–2737 (2015).10.1121/1.4932166 PubMed DOI

van 't Wout E., Haqshenas S. R., Gélat P., Betcke T., and Saffari N., “ Boundary integral formulations for acoustic modelling of high-contrast media,” Comput. Math. Appl. 105, 136–149 (2022).10.1016/j.camwa.2021.11.021 DOI

Haqshenas S. R., Gélat P., van 't Wout E., Betcke T., and Saffari N., “ A fast full-wave solver for calculating ultrasound propagation in the body,” Ultrasonics 110, 106240 (2021).10.1016/j.ultras.2020.106240 PubMed DOI

van 't Wout E., Haqshenas S. R., Gélat P., Betcke T., and Saffari N., “ Benchmarking preconditioned boundary integral formulations for acoustics,” Int. J. Numer. Methods Eng. 122(20), 5873–5897 (2021).10.1002/nme.6777 DOI

Betcke T., van 't Wout E., and Gélat P., “ Computationally efficient boundary element methods for high-frequency Helmholtz problems in unbounded domains,” in Modern Solvers for Helmholtz Problems, edited by Lahaye D., Tang J., and Vuik K. ( Birkhäuser, Cham, Switzerland, 2017), pp. 215–243.

van 't Wout E., Haqshenas S. R., Gélat P., Betcke T., and Saffari N., “ Frequency-robust preconditioning of boundary integral equations for acoustic transmission,” J. Comput. Phys. 462, 111229 (2022).10.1016/j.jcp.2022.111229 DOI

Śmigaj W., Betcke T., Arridge S., Phillips J., and Schweiger M., “ Solving boundary integral problems with BEM,” ACM Trans. Math. Softw. 41, 1–40 (2015).10.1145/2590830 DOI

Geuzaine C. and Remacle J.-F., “ Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009).10.1002/nme.2579 DOI

Schmidt R. and Singh K., “ Meshmixer: An interface for rapid mesh composition,” in Proceedings of ACM SIGGRAPH 2010 Talks, Los Angeles, CA (July 26–30, 2010).

Afanasiev M., Boehm C., van Driel M., Krischer L., Rietmann M., May D. A., Knepley M. G., and Fichtner A., “ Modular and flexible spectral-element waveform modelling in two and three dimensions,” Geophys. J. Int. 216(3), 1675–1692 (2019).10.1093/gji/ggy469 DOI

Ferroni A., Antonietti P. F., Mazzieri I., and Quarteroni A., “ Dispersion-dissipation analysis of 3-D continuous and discontinuous spectral element methods for the elastodynamics equation,” Geophys. J. Int. 211(3), 1554–1574 (2017).10.1093/gji/ggx384 DOI

Hapla V., Knepley M. G., Afanasiev M., Boehm C., van Driel M., Krischer L., and Fichtner A., “ Fully parallel mesh I/O using PETSc DMPlex with an application to waveform modeling,” SIAM J. Sci. Comput. 43(2), C127–C153 (2021).10.1137/20M1332748 DOI

Kosloff R. and Kosloff D., “ Absorbing boundaries for wave propagation problems,” J. Comput. Phys. 63(2), 363–376 (1986).10.1016/0021-9991(86)90199-3 DOI

Coreform LLC, “ Coreform Cubit (version 2021.5) [computer software],” http://coreform.com (Last viewed August 11, 2022).

Witte P. A., Louboutin M., Luporini F., Gorman G. J., and Herrmann F. J., “ Compressive least-squares migration with on-the-fly Fourier transforms,” Geophysics 84(5), R655–R672 (2019).10.1190/geo2018-0490.1 DOI

Chew W. C. and Weedon W. H., “ A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7(13), 599–604 (1994).10.1002/mop.4650071304 DOI

Kyriakou A., Neufeld E., Werner B., Székely G., and Kuster N., “ Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: A feasibility study,” J. Ther. Ultrasound 3(1), 11 (2015).10.1186/s40349-015-0032-9 PubMed DOI PMC

Neufeld E., Kyriacou A., Kainz W., and Kuster N., “ Approach to validate simulation-based distribution predictions combining the gamma-method and uncertainty assessment: Application to focused ultrasound,” J. Verif. Valid. Uncertain Quantif. 1(3), 031006 (2016).10.1115/1.4034323 DOI

Pasquinelli C., Montanaro H., Lee H. J., Hanson L. G., Kim H., Kuster N., Siebner H. R., Neufeld E., and Thielscher A., “ Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation,” J. Neural Eng. 17(4), 046010 (2020).10.1088/1741-2552/ab98dc PubMed DOI

Montanaro H., Pasquinelli C., Lee H. J., Kim H., Siebner H. R., Kuster N., Thielscher A., and Neufeld E., “ The impact of CT image parameters and skull heterogeneity modeling on the accuracy of transcranial focused ultrasound simulations,” J. Neural Eng. 18(4), 046041 (2021).10.1088/1741-2552/abf68d PubMed DOI

Cueto C., Bates O., Strong G., Cudeiro J., Luporini F., Agudo Ò. C., Gorman G., Guasch L., and Tang M.-X., “ Stride: A flexible software platform for high-performance ultrasound computed tomography,” Comput. Methods Programs Biomed. 221, 106855 (2022).10.1016/j.cmpb.2022.106855 PubMed DOI

Louboutin M., Lange M., Luporini F., Kukreja N., Witte P. A., Herrmann F. J., Velesko P., and Gorman G. J., “ Devito (v3. 1.0): An embedded domain-specific language for finite differences and geophysical exploration,” Geosci. Model Dev. 12(3), 1165–1187 (2019).10.5194/gmd-12-1165-2019 DOI

Amundsen L. and Pedersen Ø., “ Time step n-tupling for wave equations,” Geophysics 82(6), T249–T254 (2017).10.1190/geo2017-0377.1 DOI

Yao G., Da Silva N. V., and Wu D., “ An effective absorbing layer for the boundary condition in acoustic seismic wave simulation,” J. Geophys. Eng. 15(2), 495–511 (2018).10.1088/1742-2140/aaa4da DOI

Gao Y., Zhang J., and Yao Z., “ Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations,” J. Acoust. Soc. Am. 138(6), EL551–EL557 (2015).10.1121/1.4938270 PubMed DOI

Hicks G. J., “ Arbitrary source and receiver positioning in finite-difference schemes using Kaiser windowed sinc functions,” Geophysics 67(1), 156–165 (2002).10.1190/1.1451454 DOI

Martin E. and Treeby B., “ Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields,” J. Acoust. Soc. Am. 145(3), 1270–1282 (2019).10.1121/1.5093306 PubMed DOI

Gélat P., Haqshenas S. R., and van ′t Wout E., “ OptimUS: A Python library for solving 3D acoustic wave propagation,” https://github.com/optimuslib (Last viewed August 11, 2022).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...