Magnetic resonance tractography of the brachial plexus: step-by-step
Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium print
Typ dokumentu časopisecké články
PubMed
36060587
PubMed Central
PMC9403600
DOI
10.21037/qims-22-30
PII: qims-12-09-4488
Knihovny.cz E-zdroje
- Klíčová slova
- Diffusion tensor imaging (DTI), brachial plexus, generalized q-sampling imaging algorithm (GQI algorithm), magnetic resonance neurography (MRN), magnetic resonance tractography (MRT),
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Magnetic resonance (MR) tractography of the brachial plexus (BP) is challenging due to different factors such as motion artifacts, pulsation artifacts, signal-to-noise ratio, spatial resolution; eddy currents induced geometric distortions, sequence parameters and choice of used coils. Notably challenging is the separation of the peripheral nerve bundles and skeletal muscles as both structures have similar fractional anisotropy values. We proposed an algorithm for robust visualization and assessment of BP root bundles using the segmentation of the spinal cord (SSC, C4-T1) as seed points for the initial starting area for the fibre tracking algorithm. METHODS: Twenty-seven healthy volunteers and four patients with root avulsions underwent magnetic resonance imaging (MRI) examinations on a 3T MR scanner with optimized measurement protocols for diffusion-weighted images and coronal T2 weighted 3D short-term inversion recovery sampling perfection with application optimized contrast using varying flip angle evaluation sequences used for BP fibre reconstruction and MR neurography (MRN). The fibre bundles reconstruction was optimized in terms of eliminating the skeletal muscle fibres contamination using the SSC and the tracking threshold of the normalized quantitative anisotropy (NQA) on reconstruction of the BP. In our study, the NQA parameter has been used for fiber tracking instead of fractional anisotropy (FA). The diffusion data were processed in individual C4-T1 root bundles using the generalized q-sampling imaging (GQI) algorithm. Calculated diffusion parameters were statistically analysed using the two-sample t-test. The MRN was performed in MedINRIA and post-processed using the maximum intensity projection (MIP) method to demonstrate BP root bundles in multiple planes. RESULTS: In control subjects, no significant effect of laterality in diffusion parameters was found (P>0.05) in the BP. In the central part of the BP, a significant difference between control subjects and patients at P=0.02 was found in the NQA values. Other diffusion parameters were not significantly different. CONCLUSIONS: Using NQA instead of FA in the proposed algorithm allowed for a better separation of muscle and root nerve bundles. The presented algorithm yields a high quality reconstruction of the BP bundles that may be helpful both in research and clinical practice.
Zobrazit více v PubMed
Bayot ML, Nassereddin A, Varacallo M. Anatomy, Shoulder and Upper Limb, Brachial Plexus. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2021. PubMed
Tharin BD, Kini JA, York GE, Ritter JL. Brachial plexopathy: a review of traumatic and nontraumatic causes. AJR Am J Roentgenol 2014;202:W67-75. 10.2214/AJR.12.9554 PubMed DOI
Luo TD, Levy ML, Li Z. Brachial Plexus Injuries. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022. PubMed
Ohman JW, Thompson RW. Thoracic Outlet Syndrome in the Overhead Athlete: Diagnosis and Treatment Recommendations. Curr Rev Musculoskelet Med 2020;13:457-71. 10.1007/s12178-020-09643-x PubMed DOI PMC
Sharrak S, M Das J. Hand Nerve Compression Syndromes. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2021. PubMed
Davis DD, Kane SM. Ulnar Nerve Entrapment. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2021. PubMed
Gilcrease-Garcia BM, Deshmukh SD, Parsons MS. Anatomy, Imaging, and Pathologic Conditions of the Brachial Plexus. Radiographics 2020;40:1686-714. 10.1148/rg.2020200012 PubMed DOI
Conroy M, Murphy LC, McNamara B, O'Reilly S. Delayed onset radiation-induced brachial plexopathy. Breast J 2020;26:2075-6. 10.1111/tbj.13927 PubMed DOI
Kwee RM, Chhabra A, Wang KC, Marker DR, Carrino JA. Accuracy of MRI in diagnosing peripheral nerve disease: a systematic review of the literature. AJR Am J Roentgenol 2014;203:1303-9. 10.2214/AJR.13.12403 PubMed DOI
Upadhyaya V, Choudur HN. Imaging in peripheral neuropathy: Ultrasound and MRI. Indian J Musculoskelet Radiol 2021;3:14-23. 10.25259/IJMSR_27_2021 DOI
Martín Noguerol T, Barousse R, Socolovsky M, Luna A. Quantitative magnetic resonance (MR) neurography for evaluation of peripheral nerves and plexus injuries. Quant Imaging Med Surg 2017;7:398-421. 10.21037/qims.2017.08.01 PubMed DOI PMC
Filler A. Magnetic resonance neurography and diffusion tensor imaging: origins, history, and clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5000-patient study group. Neurosurgery 2009;65:A29-43. 10.1227/01.NEU.0000351279.78110.00 PubMed DOI PMC
Ranzenberger LR, Snyder T. Diffusion Tensor Imaging. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022. PubMed
Cheng SJ, Tsai PH, Lee YT, Li YT, Chung HW, Chen CY. Diffusion Tensor Imaging of the Spinal Cord. Magn Reson Imaging Clin N Am 2021;29:195-204. 10.1016/j.mric.2021.02.002 PubMed DOI
Khalilzadeh O, Fayad LM, Ahlawat S. 3D MR Neurography. Semin Musculoskelet Radiol 2021;25:409-17. 10.1055/s-0041-1730909 PubMed DOI
Boecker AH, Lukhaup L, Aman M, Bergmeister K, Schwarz D, Bendszus M, Kneser U, Harhaus L. Evaluation of MR-neurography in diagnosis and treatment in peripheral nerve surgery of the upper extremity: A matched cohort study. Microsurgery 2022;42:160-9. 10.1002/micr.30846 PubMed DOI
Hansen B, Jespersen SN. Recent Developments in Fast Kurtosis Imaging. Front Phys 2017;5:40. 10.3389/fphy.2017.00040 DOI
Andersson G, Orädd G, Sultan F, Novikov LN. In vivo Diffusion Tensor Imaging, Diffusion Kurtosis Imaging, and Tractography of a Sciatic Nerve Injury Model in Rat at 9.4T. Sci Rep 2018;8:12911. 10.1038/s41598-018-30961-1 PubMed DOI PMC
Sheikh KA. Non-invasive imaging of nerve regeneration. Exp Neurol 2010;223:72-6. 10.1016/j.expneurol.2009.07.008 PubMed DOI PMC
Manzanera Esteve IV, Farinas AF, Pollins AC, Nussenbaum ME, Cardwell NL, Kahn H, Does MD, Dortch RD, Thayer WP. Noninvasive diffusion MRI to determine the severity of peripheral nerve injury. Magn Reson Imaging 2021;83:96-106. 10.1016/j.mri.2021.08.006 PubMed DOI PMC
Pridmore MD, Glassman GE, Pollins AC, Manzanera Esteve IV, Drolet BC, Weikert DR, Does MD, Perdikis G, Thayer WP, Dortch RD. Initial findings in traumatic peripheral nerve injury and repair with diffusion tensor imaging. Ann Clin Transl Neurol 2021;8:332-47. 10.1002/acn3.51270 PubMed DOI PMC
Marquez Neto OR, Leite MS, Freitas T, Mendelovitz P, Villela EA, Kessler IM. The role of magnetic resonance imaging in the evaluation of peripheral nerves following traumatic lesion: where do we stand?. Acta Neurochir (Wien) 2017;159:281-90. 10.1007/s00701-016-3055-2 PubMed DOI
van Rosmalen MHJ, Goedee HS, Derks R, Asselman FL, Verhamme C, de Luca A, Hendrikse J, van der Pol WL, Froeling M. Quantitative magnetic resonance imaging of the brachial plexus shows specific changes in nerve architecture in chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy and motor neuron disease. Eur J Neurol 2021;28:2716-26. 10.1111/ene.14896 PubMed DOI PMC
Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging. IEEE Trans Med Imaging 2010;29:1626-35. 10.1109/TMI.2010.2045126 PubMed DOI
Yeh FC, Zaydan IM, Suski VR, Lacomis D, Richardson RM, Maroon JC, Barrios-Martinez J. Differential tractography as a track-based biomarker for neuronal injury. Neuroimage 2019;202:116131. 10.1016/j.neuroimage.2019.116131 PubMed DOI PMC
Yeh FC, Liu L, Hitchens TK, Wu YL. Mapping immune cell infiltration using restricted diffusion MRI. Magn Reson Med 2017;77:603-12. 10.1002/mrm.26143 PubMed DOI PMC
Garic D, Yeh FC, Graziano P, Dick AS. In vivo restricted diffusion imaging (RDI) is sensitive to differences in axonal density in typical children and adults. Brain Struct Funct 2021;226:2689-705. 10.1007/s00429-021-02364-y PubMed DOI PMC
Shen CY, Tyan YS, Kuo LW, Wu CW, Weng JC. Quantitative Evaluation of Rabbit Brain Injury after Cerebral Hemisphere Radiation Exposure Using Generalized q-Sampling Imaging. PLoS One 2015;10:e0133001. 10.1371/journal.pone.0133001 PubMed DOI PMC
Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB. Peripheral nerve diffusion tensor imaging: Overview, pitfalls, and future directions. J Magn Reson Imaging 2018;47:1171-89. 10.1002/jmri.25876 PubMed DOI
Bruno F, Arrigoni F, Mariani S, Patriarca L, Palumbo P, Natella R, Ma L, Guglielmi G, Galzio RJ, Splendiani A, Di Cesare E, Masciocchi C, Barile A. Application of diffusion tensor imaging (DTI) and MR-tractography in the evaluation of peripheral nerve tumours: state of the art and review of the literature. Acta Biomed 2019;90:68-76. PubMed PMC
Heckel A, Weiler M, Xia A, Ruetters M, Pham M, Bendszus M, Heiland S, Baeumer P. Peripheral Nerve Diffusion Tensor Imaging: Assessment of Axon and Myelin Sheath Integrity. PLoS One 2015;10:e0130833. 10.1371/journal.pone.0130833 PubMed DOI PMC
Su X, Kong X, Alwalid O, Wang J, Zhang H, Lu Z, Zheng C. Multisequence Quantitative Magnetic Resonance Neurography of Brachial and Lumbosacral Plexus in Chronic Inflammatory Demyelinating Polyneuropathy. Front Neurosci 2021;15:649071. 10.3389/fnins.2021.649071 PubMed DOI PMC
Yeh FC, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng WY. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One 2013;8:e80713. 10.1371/journal.pone.0080713 PubMed DOI PMC
Yeh FC, Wedeen VJ, Tseng WY. Estimation of fiber orientation and spin density distribution by diffusion deconvolution. Neuroimage 2011;55:1054-62. 10.1016/j.neuroimage.2010.11.087 PubMed DOI
Ibrahim I, Škoch A, Herynek V, Jírů F, Tintěra J. Magnetic resonance tractography of the lumbosacral plexus: Step-by-step. Medicine (Baltimore) 2021;100:e24646. 10.1097/MD.0000000000024646 PubMed DOI PMC
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979;6:65-70.
Keller S, Wang ZJ, Golsari A, Kim AC, Kooijman H, Adam G, Yamamura J. Feasibility of peripheral nerve MR neurography using diffusion tensor imaging adapted to skeletal muscle disease. Acta Radiol 2018;59:560-8. 10.1177/0284185117726100 PubMed DOI
Ho MJ, Manoliu A, Kuhn FP, Stieltjes B, Klarhöfer M, Feiweier T, Marcon M, Andreisek G. Evaluation of Reproducibility of Diffusion Tensor Imaging in the Brachial Plexus at 3.0 T. Invest Radiol 2017;52:482-7. 10.1097/RLI.0000000000000363 PubMed DOI
Oudeman J, Verhamme C, Engbersen MP, Caan MWA, Maas M, Froeling M, Nederveen AJ, Strijkers GJ. Diffusion tensor MRI of the healthy brachial plexus. PLoS One 2018;13:e0196975. 10.1371/journal.pone.0196975 PubMed DOI PMC
Wade RG, Whittam A, Teh I, Andersson G, Yeh FC, Wiberg M, Bourke G. Diffusion tensor imaging of the roots of the brachial plexus: a systematic review and meta-analysis of normative values. Clin Transl Imaging 2020;8:419-31. 10.1007/s40336-020-00393-x PubMed DOI PMC
Zhang H, Wang Y, Lu T, Qiu B, Tang Y, Ou S, Tie X, Sun C, Xu K, Wang Y. Differences between generalized q-sampling imaging and diffusion tensor imaging in the preoperative visualization of the nerve fiber tracts within peritumoral edema in brain. Neurosurgery 2013;73:1044-53; discussion 1053. 10.1227/NEU.0000000000000146 PubMed DOI
van der Jagt PK, Dik P, Froeling M, Kwee TC, Nievelstein RA, ten Haken B, Leemans A. Architectural configuration and microstructural properties of the sacral plexus: a diffusion tensor MRI and fiber tractography study. Neuroimage 2012;62:1792-9. 10.1016/j.neuroimage.2012.06.001 PubMed DOI
Naraghi AM, Awdeh H, Wadhwa V, Andreisek G, Chhabra A. Diffusion tensor imaging of peripheral nerves. Semin Musculoskelet Radiol 2015;19:191-200. 10.1055/s-0035-1546824 PubMed DOI
Kollmer J, Bendszus M. Magnetic Resonance Neurography: Improved Diagnosis of Peripheral Neuropathies. Neurotherapeutics 2021;18:2368-83. 10.1007/s13311-021-01166-8 PubMed DOI PMC
Mazal AT, Faramarzalian A, Samet JD, Gill K, Cheng J, Chhabra A. MR neurography of the brachial plexus in adult and pediatric age groups: evolution, recent advances, and future directions. Expert Rev Med Devices 2020;17:111-22. 10.1080/17434440.2020.1719830 PubMed DOI
Sneag DB, Daniels SP, Geannette C, Queler SC, Lin BQ, de Silva C, Tan ET. Post-Contrast 3D Inversion Recovery Magnetic Resonance Neurography for Evaluation of Branch Nerves of the Brachial Plexus. Eur J Radiol 2020;132:109304. 10.1016/j.ejrad.2020.109304 PubMed DOI
Zhai H, Lv Y, Kong X, Liu X, Liu D. Magnetic resonance neurography appearance and diagnostic evaluation of peripheral nerve sheath tumors. Sci Rep 2019;9:6939. 10.1038/s41598-019-43450-w PubMed DOI PMC
Su X, Kong X, Lu Z, Zhou M, Wang J, Liu X, Kong X, Zhang H, Zheng C. Use of Magnetic Resonance Neurography for Evaluating the Distribution and Patterns of Chronic Inflammatory Demyelinating Polyneuropathy. Korean J Radiol 2020;21:483-93. 10.3348/kjr.2019.0739 PubMed DOI PMC
Xu Z, Zhang T, Chen J, Liu Z, Wang T, Hu Y, Zhang J, Xue F. Combine contrast-enhanced 3D T2-weighted short inversion time inversion recovery MR neurography with MR angiography at 1.5 T in the assessment of brachial plexopathy. MAGMA 2021;34:229-39. 10.1007/s10334-020-00867-z PubMed DOI