Cenozoic origins of the genus Calliarcys (Insecta, Ephemeroptera) revealed by Micro-CT, with DNA barcode gap analysis of Leptophlebiinae and Habrophlebiinae

. 2022 Sep 08 ; 12 (1) : 15228. [epub] 20220908

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36075938
Odkazy

PubMed 36075938
PubMed Central PMC9458648
DOI 10.1038/s41598-022-18234-4
PII: 10.1038/s41598-022-18234-4
Knihovny.cz E-zdroje

Mayflies (Ephemeroptera) are among the oldest pterygote insects, with the earliest fossils dating back to the Late Carboniferous. Within mayflies, Leptophlebiidae are a highly diverse and widespread group, with approximately 140 genera and 640 species. Whereas taxonomy, systematics, and phylogeny of extant Leptophlebiidae are in the focus of extensive studies, little is known about leptophlebiid fossil taxa. Because fossil remains of Ephemeroptera in sedimentary rocks are relatively rare, inclusions of mayflies in amber are a unique source of information on their evolution and diversity in the past. Leptophlebiidae found in Cenozoic resins mostly belong to the subfamilies Leptophlebiinae (in Eocene Baltic amber) and Atalophlebiinae (in Miocene Dominican and Mexican ambers). In the present contribution, we confirm the first finding of the genus Calliarcys from Eocene Baltic amber by using Micro-CT, which allowed confirming its generic placement by visualizing diagnostic key characters otherwise hidden by a cloud of turbidity. Additionally, we present first molecular data on the extant species Calliarcys humilis Eaton, 1881 from the Iberian Peninsula and the barcode gap analysis for Leptophlebiinae and Habrophlebiinae.

Zobrazit více v PubMed

Eaton A. An announcement of new genera of the Ephemeridae. Entomol. Mon. Mag. 1881;17:191–197.

Godunko RJ, Sroka P, Soldán T, Bojková J. The higher phylogeny of Leptophlebiidae (Insecta: Ephemeroptera), with description of a new species of Calliarcys Eaton, 1881. Arthropod Syst. Phyl. 2015;73:259–279.

Peters, W.L. Phylogeny of the Leptophlebiidae (Ephemeroptera): An introduction. In Advances in Ephemeroptera biology 33–41 (Plenum Press, New York, 1980).

Kluge NJ. Habrophlebiinae subfam. N. with description of a new species of Habroleptoides from the Caucasus (Ephemeroptera: Leptophlebiidae) Zoosystematica Rossica. 1994;3:35–43.

Peters W, Gillies M. Square facets in a hexagonal world. In: Corkum LD, Ciborowski JJH, editors. Current directions in research on Ephemeroptera. Canadian Scholars’ Press; 1995. pp. 371–375.

Peters, W.L. A redescription of the imago of Castanophlebia Barnard, 1932 from South Africa (Ephemeroptera: Leptophlebiidae: Atalophlebiinae). In Proceedings of the Ephemeroptera & Plecoptera. Biology-Ecology-Systematics 449–454 (Proc. 8th Int. Conf. Ephemeroptera & 12th Int. Symp. Plecoptera, 14–20 August 1995, Losanne, Switzerland. Mauron+ Tinguely & Lacht SA, Fribourg/Switzerland, 1997).

Kluge N. Higher system of Atalophlebiinae (Leptophlebiidae) with description of three new species of Terpides s.l. from Peruvian Amazonia. Russian Entomol. J. 2009;18:243–256.

Bauernfeind E, Soldan T. The mayflies of Europe (Ephemeroptera) Leiden: Brill; 2012. p. 781.

O’Donnell BC, Jockusch EL. Phylogenetic relationships of leptophlebiid mayflies as inferred by histone H3 and 28S ribosomal DNA. Syst. Entomol. 2008;33:651–667. doi: 10.1111/j.1365-3113.2008.00434.x. DOI

Ogden TH, Gattolliat JL, Sartori M, Staniczek AH, Soldan T, Whiling MF. Towards a new paradigm in mayfly phylogeny (Ephemeroptera): combined analysis of morphological and molecular data. Syst. Entomol. 2009;34:616–634. doi: 10.1111/j.1365-3113.2009.00488.x. DOI

Monjardim M, Paresque R, Salles FF. Phylogeny and classification of Leptophlebiidae (Ephemeroptera) with an emphasis on Neotropical fauna. Syst. Entomol. 2020;45:415–429. doi: 10.1111/syen.12402. DOI

Gatti FD, Salles FF, Suter PJ, Leite YLR. Gondwana breakup under the ephemeral look. J. Zool. Syst. Evol. Res. 2021;59:1028–1036. doi: 10.1111/jzs.12477. DOI

Kundrata R, Bukejs A, Prosvirov AS, Hoffmannova J. X-ray micro-computed tomography reveals a unique morphology in a new click-beetle (Coleoptera, Elateridae) from the Eocene Baltic amber. Sci. Rep. 2020;10:20158. doi: 10.1038/s41598-020-76908-3. PubMed DOI PMC

Schmidt J, Michalik P. The ground beetle genus Bembidion Latreille in Baltic amber: Review of preserved specimens and first 3D reconstruction of endophallic structures using X-ray microscopy (Coleoptera, Carabidae, Bembidiini) ZooKeys. 2017;662:101–126. doi: 10.3897/zookeys.662.12124. PubMed DOI PMC

Tihelka E, Huang D, Perrichot V, Cai C. A previously missing link in the evolution of dasytine soft-winged flower beetles from Cretaceous Charentese amber (Coleoptera, Melyridae) Papers Palaeontol. 2021;7:1753–1764. doi: 10.1002/spp2.1360. DOI

Sartori M, Kubiak M, Michalik P. Deciphering genital anatomy of rare, delicate and precious specimens: First study of two type specimens of mayflies using micro-computed X-ray tomography (Ephemeroptera; Heptageniidae) Zoosymposia. 2016;11:28–32. doi: 10.11646/zoosymposia.11.1.7. DOI

Penney D, McNeil A, Green DI, Bradley RS, Jepson JE, Withers PJ, Preziosi RF. Ancient ephemeroptera-collembola symbiosis fossilized in amber predicts contemporary phoretic associations. PLoS ONE. 2012;7:e47651. doi: 10.1371/journal.pone.0047651. PubMed DOI PMC

Peters, W.L. A revision of the generic classification of the Eastern Hemisphere Leptophlebiidae (Ephemeroptera). University of Utah, PhD thesis, 1966.

Peters WL, Edmunds G. Revision of the generic classification of the Eastern Hemisphere Leptophlebiidae (Ephemeroptera) Pacific Insects. 1970;12:157–240.

Eaton AE. A revisional monograph of recent Ephemeridae or Mayflies. Trans. Linn. Soc. London. 1884;3:1–258. doi: 10.1111/j.1096-3642.1883.tb01550a.x. DOI

Kimmins DE. The Ephemeroptera types of species described by A.E. Eaton, R. McLachlan and F. Walker, with particular reference to those in the British Museum (Natural History) Bull. Br. Mus. (Nat. Hist.) Entomol. 1960;9:269–318. doi: 10.5962/bhl.part.27553. DOI

Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 2007;23(4):167–172. doi: 10.1016/j.tig.2007.02.001. PubMed DOI

Hebert PDN, Penton EH, Burns JM, Janzen DH, Ten HW. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natur. Acad. Sci. USA. 2004;101:14812–14817. doi: 10.1073/pnas.0406166101. PubMed DOI PMC

Hebert PD, Ratnasingham S, Zakharov EV, Telfer AC, Levesque-Beaudin V, Milton MA, DeWaard JR. Counting animal species with DNA barcodes: Canadian insects. Philos. Trans. R. Soc. B: Biol. Sci. 2016;371(1702):20150333. doi: 10.1098/rstb.2015.0333. PubMed DOI PMC

Bruce K, Blackman RC, Bourlat SJ, Hellström M, Bakker J, Bista I, Deiner K. A practical guide to DNA-based methods for biodiversity assessment. Sofia: Pensoft; 2021.

Lacoursière-Roussel A, Howland K, Normandeau E, Grey EK, Archambault P, Deiner K, Bernatchez L. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecol. Evol. 2018;8(16):7763–7777. doi: 10.1002/ece3.4213. PubMed DOI PMC

Mugnai F, Meglécz E, Abbiati M, Bavestrello G, Bertasi F, Bo M, Costantini F. Are well-studied marine biodiversity hotspots still blackspots for animal barcoding? Glob. Ecol. Conserv. 2021;32:e01909. doi: 10.1016/j.gecco.2021.e01909. DOI

Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, Ekrem T. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ. 2019;678:499–524. doi: 10.1101/576553. PubMed DOI

Ferro ML, Sites RW. The Ephemeroptera, Plecoptera, and Trichoptera of Missouri state parks, with notes on biomonitoring, mesohabitat associations, and distribution. J. Kansas Entomol. Soc. 2007;80(2):105–129. doi: 10.2317/0022-8567(2007)80[105:TEPATO]2.0.CO;2. DOI

Keck F, Hürlemann S, Locher N, Stamm Ch, Deiner K, Altermatt F. A triad of kicknet sampling, eDNA metabarcoding, and predictive modeling to assess richness of mayflies, stoneflies and caddisflies in rivers. Metab. Metag. 2022 doi: 10.3897/mbmg.6.79351. DOI

Morinière J, Hendrich L, Balke M, Beermann AJ, König T, Hess M, Koch S, Müller R, Leese F, Hebert PDN, Hausmann A, Schubart CD, Haszprunar G. A DNA barcode library for Germany's mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera) Mol. Ecol. Resour. 2017;17(6):1293–1307. doi: 10.1111/1755-0998.12683[Epub2017,June27]. PubMed DOI

Copilaș-Ciocianu, D., Rewicz, T., Sands, A.F., Palatov, D., Marin, I., Arbačiauskas, K., Audzijonyte, A. The “Crustacean seas” in the light of DNA barcoding: a reference library for endemic Ponto-Caspian amphipods 2022. Preprint: 10.21203/rs.3.rs-1562456/v1. PubMed PMC

Meiklejohn KA, Damaso N, Robertson JM. Assessment of BOLD and GenBank—their accuracy and reliability for the identification of biological materials. PLoS ONE. 2019;14:1–14. doi: 10.1371/journal.pone.0217084. PubMed DOI PMC

Pentinsaari M, Ratnasingham S, Miller SE, Hebert PD. BOLD and GenBank revisited – Do identification errors arise in the lab or in the sequence libraries? PLoS ONE. 2020;15(4):e0231814. doi: 10.1371/journal.pone.0231814. PubMed DOI PMC

Godunko RJ, Martynov AV, Staniczek AH. First fossil record of the mayfly family Vietnamellidae (Insecta, Ephemeroptera) from Burmese Amber confirms its Oriental origin and gives new insights into its evolution. ZooKeys. 2021;1036:99–120. doi: 10.3897/zookeys.1036.66435. PubMed DOI PMC

Godunko RJ, Neumann C, Staniczek AH. Revision of fossil Metretopodidae (Insecta, Ephemeroptera) in Baltic amber—Part 4: Description of two new species of Siphloplecton Clemens, 1915, with notes on the new S. jaegeri species group and with key to fossil male adults of Siphloplecton. ZooKeys. 2019;898:1–26. doi: 10.11646/zootaxa.4103.1.1. PubMed DOI PMC

Kluge NJ. The phylogenetic system of Ephemeroptera. Kluwer Academic Publishers; 2004.

Tsui PTP, Peters WL. The comparative morphology of the thorax of selected genera of the Leptophlebiidae (Ephemeroptera) J. Zool. 1972;168:309–367. doi: 10.1111/j.1469-7998.1972.tb01351.x. DOI

Tsui PTP, Peters WL. The comparative morphology and phylogeny of certain Gondwanian Leptophlebiidae based on the Thorax, Tentorium, and Abdominal Terga (Ephemeroptera) Trans. Am. Entomol. Soc. 1975;101:505–595.

Willkommen J. The morphology of the pterothorax of Ephemeroptera, Odonata and Plecoptera (Insecta) and the homology of wing base sclerites and flight muscles. Stuttgarter Beiträge zur Naturkunde A. 2008;1:203–300.

Alba-Tercedor, J. From the sample preparation to the volume rendering images of small animals: A step by step example of a procedure to carry out the micro-CT study of the leafhopper insect Homalodisca vitripennis (Hemiptera: Cicadellidae). In Proceedings of the Bruker Micro-CT Users Meeting 260–288 (2014).

Scientific, T.F. Amira 3D visualization and analysis software (2017).

Stalling D, Westerhoff M, Hege H-C. Amira: A highly interactive system for visual data analysis. Visual. Handb. 2005;38:749–767. doi: 10.1016/B978-012387582-2/50040-X. DOI

Astrin JJ, Stüben PE. Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera:Curculionidae) Invertebr. Syst. 2008;22:503–522. doi: 10.1071/IS07057. DOI

Hou Z, Fu J, Li S. A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Mol. Phylogenet. Evol. 2007;45:596–611. doi: 10.1016/j.ympev.2007.06.006. PubMed DOI

Rewicz T, Móra A, Tończyk G, Szymczak A, Grabowski M, Calleja EJ, Pernecker B, Csabai Z. First records raise questions: DNA barcoding of Odonata in the middle of the Mediterranean. Genome. 2021;64:196–206. doi: 10.1139/gen-2019-0226%M32502367. PubMed DOI

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes7, 355–364 (2007). 10.1111/j.1471-8286.2007.01678.x. PubMed PMC

Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: The barcode index number (BIN) system. PLoS ONE. 2013;8:e66213. doi: 10.1371/journal.pone.0066213. PubMed DOI PMC

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI

Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...