Evaluation of Angiogenesis in an Acellular Porous Biomaterial Based on Polyhydroxybutyrate and Chitosan Using the Chicken Ex Ovo Chorioallantoic Membrane Model

. 2022 Aug 30 ; 14 (17) : . [epub] 20220830

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36077732

Grantová podpora
APVV-20-0073 Slovak Research and Development Agency
VEGA 1/0050/19 Slovak Research and Development Agency

The chorioallantoic membrane (CAM) is a highly vascularized avian extraembryonic membrane widely used as an in vivo model to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the use of CAM has become an integral part of the biocompatibility testing process for developing biomaterials intended for regenerative strategies and tissue engineering applications. In this study, we used the chicken ex ovo CAM assay to investigate the angiogenic potential of innovative acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold, which is intended for the treatment of hard tissue defects, depending on treatment with pro- and anti-angiogenic substances. On embryonic day (ED) 7, the experimental biomaterials were placed on the CAM alone or soaked in vascular endothelial growth factor (VEGF-A), saline solution (PHY), or tyrosine kinase inhibitor (SU5402). After 72 h, the formation of vessels was analyzed in the surrounding area of the scaffold and inside the pores of the implants, using markers of embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and macrophages (KUL-01). The morphological and histochemical analysis showed strong angiogenic potential of untreated scaffolds without additional effect of the angiogenic factor, VEGF-A. The lowest angiogenic potential was observed in scaffolds soaked with SU5402. Gene expression of pro-angiogenic growth factors, i.e., VEGF-A, ANG-2, and VE-CAD, was upregulated in untreated scaffolds after 72 h, indicating a pro-angiogenic environment. We concluded that the PHB/CHIT has a strong endogenous angiogenic potential and could be promising biomaterial for the treatment of hard tissue defects.

Zobrazit více v PubMed

Mangir N., Dikici S., Claeyssens F., MacNeil S. Using ex ovo Chick Chorioallantoic Membrane (CAM) Assay To Evaluate the Biocompatibility and Angiogenic Response to Biomaterials. ACS Biomater. Sci. Eng. 2019;5:3190–3200. doi: 10.1021/acsbiomaterials.9b00172. PubMed DOI

Ribatti D., Annese T., Tamma R. The use of the chick embryo CAM assay in the study of angiogenic activity of biomaterials. Microvasc. Res. 2020;131:104026. doi: 10.1016/j.mvr.2020.104026. PubMed DOI

Hinderer S., Layland S.L., Schenke-Layland K. ECM and ECM-like materials—Biomaterials for applications in regenerative medicine and cancer therapy. Adv. Drug Deliv. Rev. 2016;97:260–269. doi: 10.1016/j.addr.2015.11.019. PubMed DOI

Ambrosio L., Raucci M., Vadalà G., Ambrosio L., Papalia R., Denaro V. Innovative Biomaterials for the Treatment of Bone Cancer. Int. J. Mol. Sci. 2021;22:8214. doi: 10.3390/ijms22158214. PubMed DOI PMC

Petrovova E., Giretova M., Kvasilova A., Benada O., Danko J., Medvecky L., Sedmera D. Preclinical alternative model for analysis of porous scaffold biocompatibility applicable in bone tissue engineering. Altex. 2019;36:121–130. doi: 10.14573/altex.1807241. PubMed DOI

Kiran A.S.K., Ramakrishna S. An Introduction to Biomaterials Science and Engineering. World Scientific Publishing; Singapore: 2021. pp. 82–93.

Shahali Z., Karbasi S., Avadi M.R., Semnani D., Zargar E.N., Hashemibeni B. Evaluation of structural, mechanical, and cellular behavior of electrospun poly-3-hydroxybutyrate scaffolds loaded with glucosamine sulfate to develop cartilage tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2017;66:589–602. doi: 10.1080/00914037.2016.1252353. DOI

Petrovova E., Tomco M., Holovska K., Danko J., Kresakova L., Vdoviakova K., Simaiova V., Kolvek F., Hornakova P., Toth T., et al. PHB/CHIT Scaffold as a Promising Biopolymer in the Treatment of Osteochondral Defects—An Experimental Animal Study. Polymers. 2021;13:1232. doi: 10.3390/polym13081232. PubMed DOI PMC

Bakhtiari S.S.E., Karbasi S., Toloue E.B. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. Int. J. Biol. Macromol. 2020;166:986–998. doi: 10.1016/j.ijbiomac.2020.10.255. PubMed DOI

Ivanova D.G., Yaneva Z.L. Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy. BioRes. Open Access. 2020;9:64–72. doi: 10.1089/biores.2019.0028. PubMed DOI PMC

Lee D.-S., Cho Y.-S., Je J.-Y. Antioxidant and Antibacterial Activities of Chitosan-Phloroglucinol Conjugate. Fish. Aquat. Sci. 2013;16:229–235. doi: 10.5657/FAS.2013.0229. DOI

Park P.J., Je J.Y., Kim S.K. Free radical scavenging activities of differently deacylated chitosans using an ESR spectrometer. Carbohydr. Polym. 2004;55:17–22. doi: 10.1016/j.carbpol.2003.05.002. DOI

Lee S.-H., Ryu B., Je J.-Y., Kim S.-K. Diethylaminoethyl chitosan induces apoptosis in HeLa cells via activation of caspase-3 and p53 expression. Carbohydr. Polym. 2011;84:571–578. doi: 10.1016/j.carbpol.2010.12.027. DOI

Victor R.D.S., Santos A.M.D.C., De Sousa B.V., Neves G.D.A., Santana L.N.D.L., Menezes R.R. A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials. 2020;13:4995. doi: 10.3390/ma13214995. PubMed DOI PMC

Zhu Y., Zhang Y., Zhou Y. Application progress of modified chitosan and its composite biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2022;23:6574. doi: 10.3390/ijms23126574. PubMed DOI PMC

Lizardi-Mendoza J., Monal W.M.A., Valencia F.M.G. Chemical characteristics and functional properties of chitosan. In: Bautista-Banos S., Romanazzi G., Jimenez-Aparicio A., editors. Chitosan in the Preservation of Agricultural Commodities. Elsevier; Amsterdam, The Netherlands: 2016. pp. 3–31.

Olanipekun E.O., Ayodele O., Olatunde O.C., Olusegun S.J. Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential. Int. J. Biol. Macromol. 2021;183:1971–1977. doi: 10.1016/j.ijbiomac.2021.05.162. PubMed DOI

Giretová M., Medvecky L., Petrovova E., Cizkova D., Danko J., Mudronova D., Slovinska L., Bures R. Polyhydroxy-butyrate/Chitosan 3D scaffolds promote in vitro and in vivo chondrogenesis. Appl. Biochem. Biotechnol. 2019;189:556–575. doi: 10.1007/s12010-019-03021-1. PubMed DOI

Pulingam T., Appaturi J.N., Parumasivam T., Ahmad A., Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers. 2022;14:2141. doi: 10.3390/polym14112141. PubMed DOI PMC

Nowak-Sliwinska P., Segura T., Iruela-Arispe M.L. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis. 2014;17:779–804. doi: 10.1007/s10456-014-9440-7. PubMed DOI PMC

Chavakis E., Dimmer S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler. Thromb. Vasc. Biol. 2002;22:887–893. doi: 10.1161/01.ATV.0000017728.55907.A9. PubMed DOI

Anderson S.M., Siegman S.N., Segura T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials. 2011;32:7432–7443. doi: 10.1016/j.biomaterials.2011.06.027. PubMed DOI PMC

Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307. doi: 10.1038/nature10144. PubMed DOI PMC

Ribatti D. The chick embryo chorioallantoic membrane as a model for tumor biology. Exp. Cell Res. 2014;328:314–324. doi: 10.1016/j.yexcr.2014.06.010. PubMed DOI

Marinaccio C., Nico B., Ribatti D. Differential expression of angiogenic and anti-angiogenic molecules in the chick embryo chorioallantoic membrane and selected organs during embryonic development. Int. J. Dev. Biol. 2013;57:907–916. doi: 10.1387/ijdb.130317dr. PubMed DOI

Baiguera S., Macchiarini P., Ribatti D. Chorioallantoic membrane for in vivo investigation of tissue-engineered construct biocompatibility. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012;100:1425–1434. doi: 10.1002/jbm.b.32653. PubMed DOI

Valdes T.I., Kreutzer D., Moussy F. The chick chorioallantoic membrane as a novel in vivo model for the testing of bio-materials. J. Biomed. Mater. Res. 2002;62:273–282. doi: 10.1002/jbm.10152. PubMed DOI

Tay H., Du Cheyne C., Demeyere K., De Craene J., De Bels L., Meyer E., Zijlstra A., De Spiegelaere W. Depletion of Embryonic Macrophages Leads to a Reduction in Angiogenesis in the Ex Ovo Chick Chorioallantoic Membrane Assay. Cells. 2020;10:5. doi: 10.3390/cells10010005. PubMed DOI PMC

Chen L., Wang S., Feng Y., Zhang J., Du Y., Zhang J., Van Ongeval C.H., Ni Y., Li Y. Utilisation of chick embryo chori-oallantoic membrane as a model platform for imaging-navigated biomedical research. Cells. 2021;10:463. doi: 10.3390/cells10020463. PubMed DOI PMC

Maina J.N. The Biology of the Avian Respiratory System. Springer; Cham, Switzerland: 2017. Structure and Function of the Shell and the Chorioallantoic Membrane of the Avian Egg: Embryonic Respiration; pp. 219–247. DOI

Maksimov V.F., Korostyshevskaya I.M., Kurganov S.A. Functional morphology of chorioallantoic vascular network in chicken. Bull. Exp. Biol. Med. 2006;142:367–371. doi: 10.1007/s10517-006-0368-9. PubMed DOI

Makanya A.N., Dimova I., Koller T., Styp-Rekowska B., Djonov V. Dynamics of the Developing Chick Chorioallantoic Membrane Assessed by Stereology, Allometry, Immunohistochemistry and Molecular Analysis. PLoS ONE. 2016;11:e0152821. doi: 10.1371/journal.pone.0152821. PubMed DOI PMC

Ribatti D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod. Toxicol. 2017;70:97–101. doi: 10.1016/j.reprotox.2016.11.004. PubMed DOI

Zwadlo-Klarwasser G.-C., Görlitz K., Hafemann B., Klee D., Klosterhalfen B. The chorioallantoic membrane of the chick embryo as a simple model for the study of the angiogenic and inflammatory response to biomaterials. J. Mater. Sci. Mater. Med. 2001;12:195–199. doi: 10.1023/a:1008950713001. PubMed DOI

Liu M., Xie S., Zhou J. Use of animal models for the imaging and quantification of angiogenesis. Exp. Anim. 2018;67:1–6. doi: 10.1538/expanim.17-0054. PubMed DOI PMC

Franco N.H., Olsson I., Olsson A. Scientists and the 3Rs: Attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science. Lab. Anim. 2013;48:50–60. doi: 10.1177/0023677213498717. PubMed DOI

Ribatti D. Chapter 5 Chick Embryo Chorioallantoic Membrane as a Useful Tool to Study Angiogenesis. Int. Rev. Cell Mol. Biol. 2008;270:181–224. doi: 10.1016/s1937-6448(08)01405-6. PubMed DOI

Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech. Dev. 2016;141:70–77. doi: 10.1016/j.mod.2016.05.003. PubMed DOI

Ribatti D., Tamma R., Annese T. Chorioallantoic membrane vascularization. A meta-analysis. Exp. Cell Res. 2021;405:112716. doi: 10.1016/j.yexcr.2021.112716. PubMed DOI

Xiao X., Zhou X., Ming H., Zhang J., Huang G., Zhang Z., Li P. Chick Chorioallantoic Membrane Assay: A 3D Animal Model for Study of Human Nasopharyngeal Carcinoma. PLoS ONE. 2015;10:e0130935. doi: 10.1371/journal.pone.0130935. PubMed DOI PMC

Gorustovich A.A., Vargas G.E., Bretcanu O., Mesones R.V., López J.M.P., Boccaccini A.R. Novel bioassay to evaluate biocompatibility of bioactive glass scaffolds for tissue engineering. Adv. Appl. Ceram. 2008;107:274–276. doi: 10.1179/174367508X306541. DOI

Tomco M., Petrovova E., Giretova M., Almasiova V., Holovska K., Cigankova V., Jenca A., Jencova J., Boldizar M., Balazs K., et al. In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model. Anat. Sci. Int. 2016;92:569–580. doi: 10.1007/s12565-016-0362-x. PubMed DOI

Klueh U., Dorsky D.I., Moussy F., Kreutzer D.L. Ex ova chick chorioallantoic membrane as a novel model for evaluation of tissue responses to biomaterials and implants. J. Biomed. Mater. Res. 2003;67:838–843. doi: 10.1002/jbm.a.10059. PubMed DOI

Oates M., Chen R., Duncan M., Hunt J. The angiogenic potential of three-dimensional open porous synthetic matrix materials. Biomaterials. 2007;28:3679–3686. doi: 10.1016/j.biomaterials.2007.04.042. PubMed DOI

Samourides A., Browning L., Hearnden V., Chen B. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Mater. Sci. Eng. C. 2019;108:110384. doi: 10.1016/j.msec.2019.110384. PubMed DOI

Medvecky L., Giretova M., Stulajterova R. Properties and in vitro characterization of polyhydroxybutyrate–chitosan scaffolds prepared by modified precipitation method. J. Mater. Sci. Mater. Electron. 2013;25:777–789. doi: 10.1007/s10856-013-5105-0. PubMed DOI

Giretova M., Medvecky L., Stulajterova R., Sopcak T., Briancin J., Tatarkova M. Effect of enzymatic degradation of chitosan in polyhydroxabutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response. J. Mater. Sci. Mater. Med. 2016;27:181. doi: 10.1007/s10856-016-5801-7. PubMed DOI

Luptakova L., Dvorcakova S., Demcisakova Z., Belbahri L., Holovska K., Petrovova E. Dimethyl Sulfoxide: Morphological, Histological, and Molecular View on Developing Chicken Liver. Toxics. 2021;9:55. doi: 10.3390/toxics9030055. PubMed DOI PMC

Gheorghescu A., Thompson J. Delayed vasculogenesis and impaired angiogenesis due to altered Ang-2 and VE-cadherin levels in the chick embryo model following exposure to cadmium. Pediatr. Surg. Int. 2015;32:175–186. doi: 10.1007/s00383-015-3830-9. PubMed DOI

Stock U.A., Vacanti J.P. Tissue Engineering: Current State and Prospects. Annu. Rev. Med. 2001;52:443–451. doi: 10.1146/annurev.med.52.1.443. PubMed DOI

Klagsbrun M., Knighton D., Folkman J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 1976;36:110–114. PubMed

Kohli N., Sawadkar P., Ho S., Sharma V., Snow M., Powell S., Woodruff M.A., Hook L., Garcia-Gareta E. Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimized ex ovo chorioallantoic membrane model. J. Tissue. Eng. 2020;11:1–15. doi: 10.1177/2041731420901621. PubMed DOI PMC

Rosengren A., Bjursten L.M. Pore size in implanted polypropylene filters is critical for tissue organization. J. Biomed. Mater. Res. 2003;67A:918–926. doi: 10.1002/jbm.a.10509. PubMed DOI

Magnaudeix A., Usseglio J., Lasgorceix M., Lalloue F., Damia C., Brie J., Pascaud-Mathieu P., Champion E. Quantitative analysis of vascular colonization and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) model. Acta. Biomater. 2016;38:179–189. doi: 10.1016/j.actbio.2016.04.039. PubMed DOI

Van Tienen T.G., Heijkants R.G., Buma P., de Groot J.H., Pennings A.J., Veth R.P. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials. 2001;23:1731–1738. doi: 10.1016/S0142-9612(01)00280-0. PubMed DOI

D´Arcy P.F., Howard E.M. A new anti-inflammatory test, utilizing the chorio-allantoic membrane of the chick embryo. Br. J. Pharmac. Chemother. 1967;29:378–387. doi: 10.1111/j.1476-5381.1967.tb01969.x. PubMed DOI PMC

Ribatti D., Nico B., Vacca A., Presta M. The gelatin sponge–chorioallantoic membrane assay. Nat. Protoc. 2006;1:85–91. doi: 10.1038/nprot.2006.13. PubMed DOI

Nanka O., Peumans W.J., Van Damme E.J., Pfuller U., Valasek P., Halata Z., Schumacher U., Grim M. Lectin histo-chemistry of microvascular endothelium in chick and quail musculature. Anat. Emrbyol. 2001;204:407–411. doi: 10.1007/s004290100212. PubMed DOI

Jilani S.M., Murphy T.J. Thai, S.N.M.; Eichmann, A.; Alva, J.A.; Iruela-Arispe, M.L. Selective binding of lectins to embryonic chicken vasculature. J. Histochem. Cytochem. 2003;51:597–604. doi: 10.1177/002215540305100505. PubMed DOI

Hong K.H., Ryu J., Han K.H. Monocyte chemoattractant protein-1–induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood. 2005;105:1405–1407. doi: 10.1182/blood-2004-08-3178. PubMed DOI

Majd H., Scherer S.S., Boo S., Ramondetti S., Cambridge E., Raffoul W., Friedrich M., Pittet B., Pioletti D., Hinz B., et al. Novel micropatterns mechanically control fibrotic reactions at the surface of silicone implants. Biomaterials. 2015;54:136–147. doi: 10.1016/j.biomaterials.2015.03.027. PubMed DOI

Emde B., Heinen A., Gödecke A., Bottermann K. Wheat germ agglutinin staining as a suitable method for detection and quantification of fibrosis in cardiac tissue after myocardial infarction. Eur. J. Histochem. 2014;58:2448. doi: 10.4081/ejh.2014.2448. PubMed DOI PMC

Du Chayne C.H., Smeets M., De Spiegelaere W. Techniques used to asses intussusceptive angiogenesis: A systematic review. Dev. Dyn. 2021;250:1–13. PubMed

Tavakkoli H., Attaran R., Khosravi A., Salari Z., Salarkia E., Dabiri S., Mosallanejad S.S. Vascular alteration in relation to fosfomycine: In silico and in vivo investigations using a chick embryo model. Biomed. Pharmacother. 2019;118:109240. doi: 10.1016/j.biopha.2019.109240. PubMed DOI

Rizzi A., Benagiano V., Ribatti D. Angiogenesis versus arteriogenesis. Rom. J. Morphol. Embryol. 2017;58:15–19. PubMed

Tufan A.C., Tufan N.L.S. The Chick Embryo Chorioallantoic Membrane as a Model System for the Study of Tumor Angiogenesis, Invasion and Development of Anti-Angiogenic Agents. Curr. Cancer Drug Targets. 2005;5:249–266. doi: 10.2174/1568009054064624. PubMed DOI

Talavera-Adame D., Xiong Y., Zhao T., Arias A.E., Sierra-Honigmann M.R., Farkas D.L. Quantitative and morphometric evaluation of the angiogenic effects of leptin. J. Biomed. Opt. 2008;13:064017. doi: 10.1117/1.3028010. PubMed DOI

Zijlstra A., Lewis J.D. Visualization and quantification of de novo angiogenesis in ex ovo chicken embryos. In: Zudaire E., Cuttitta F., editors. The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Application. Springer; Dordrecht, The Netherlands: 2012. pp. 217–240.

Ferra N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999;56:794–814. doi: 10.1046/j.1523-1755.1999.00610.x. PubMed DOI

Jones P.F., McClain J., Robinson D.M., Sato T.N., Yancopoulos G.D. Identification and characterization of chicken cDNAs encoding the endothelial cell-specific receptor tyrosine kinase Tie2 and its ligands, the angiopoietins. Angiogenesis. 1998;2:357–364. doi: 10.1023/A:1009251004253. PubMed DOI

Buríková M., Bilčík B., Máčajová M., Výboh P., Bizik J., Mateašík A., Čavarga I., Miškovský P. Hypericin fluorescence kinetics in the presence of low density lipoproteins: Study on quail CAM assay for topical delivery. Gen. Physiol. Biophys. 2016;35:459–468. doi: 10.4149/gpb_2016014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace