Evaluation of Angiogenesis in an Acellular Porous Biomaterial Based on Polyhydroxybutyrate and Chitosan Using the Chicken Ex Ovo Chorioallantoic Membrane Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-20-0073
Slovak Research and Development Agency
VEGA 1/0050/19
Slovak Research and Development Agency
PubMed
36077732
PubMed Central
PMC9454696
DOI
10.3390/cancers14174194
PII: cancers14174194
Knihovny.cz E-zdroje
- Klíčová slova
- CAM assay, angiogenesis, biomaterial, bone tissue engineering, chitosan, polyhydroxybutyrate, regeneration,
- Publikační typ
- časopisecké články MeSH
The chorioallantoic membrane (CAM) is a highly vascularized avian extraembryonic membrane widely used as an in vivo model to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the use of CAM has become an integral part of the biocompatibility testing process for developing biomaterials intended for regenerative strategies and tissue engineering applications. In this study, we used the chicken ex ovo CAM assay to investigate the angiogenic potential of innovative acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold, which is intended for the treatment of hard tissue defects, depending on treatment with pro- and anti-angiogenic substances. On embryonic day (ED) 7, the experimental biomaterials were placed on the CAM alone or soaked in vascular endothelial growth factor (VEGF-A), saline solution (PHY), or tyrosine kinase inhibitor (SU5402). After 72 h, the formation of vessels was analyzed in the surrounding area of the scaffold and inside the pores of the implants, using markers of embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and macrophages (KUL-01). The morphological and histochemical analysis showed strong angiogenic potential of untreated scaffolds without additional effect of the angiogenic factor, VEGF-A. The lowest angiogenic potential was observed in scaffolds soaked with SU5402. Gene expression of pro-angiogenic growth factors, i.e., VEGF-A, ANG-2, and VE-CAD, was upregulated in untreated scaffolds after 72 h, indicating a pro-angiogenic environment. We concluded that the PHB/CHIT has a strong endogenous angiogenic potential and could be promising biomaterial for the treatment of hard tissue defects.
Zobrazit více v PubMed
Mangir N., Dikici S., Claeyssens F., MacNeil S. Using ex ovo Chick Chorioallantoic Membrane (CAM) Assay To Evaluate the Biocompatibility and Angiogenic Response to Biomaterials. ACS Biomater. Sci. Eng. 2019;5:3190–3200. doi: 10.1021/acsbiomaterials.9b00172. PubMed DOI
Ribatti D., Annese T., Tamma R. The use of the chick embryo CAM assay in the study of angiogenic activity of biomaterials. Microvasc. Res. 2020;131:104026. doi: 10.1016/j.mvr.2020.104026. PubMed DOI
Hinderer S., Layland S.L., Schenke-Layland K. ECM and ECM-like materials—Biomaterials for applications in regenerative medicine and cancer therapy. Adv. Drug Deliv. Rev. 2016;97:260–269. doi: 10.1016/j.addr.2015.11.019. PubMed DOI
Ambrosio L., Raucci M., Vadalà G., Ambrosio L., Papalia R., Denaro V. Innovative Biomaterials for the Treatment of Bone Cancer. Int. J. Mol. Sci. 2021;22:8214. doi: 10.3390/ijms22158214. PubMed DOI PMC
Petrovova E., Giretova M., Kvasilova A., Benada O., Danko J., Medvecky L., Sedmera D. Preclinical alternative model for analysis of porous scaffold biocompatibility applicable in bone tissue engineering. Altex. 2019;36:121–130. doi: 10.14573/altex.1807241. PubMed DOI
Kiran A.S.K., Ramakrishna S. An Introduction to Biomaterials Science and Engineering. World Scientific Publishing; Singapore: 2021. pp. 82–93.
Shahali Z., Karbasi S., Avadi M.R., Semnani D., Zargar E.N., Hashemibeni B. Evaluation of structural, mechanical, and cellular behavior of electrospun poly-3-hydroxybutyrate scaffolds loaded with glucosamine sulfate to develop cartilage tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2017;66:589–602. doi: 10.1080/00914037.2016.1252353. DOI
Petrovova E., Tomco M., Holovska K., Danko J., Kresakova L., Vdoviakova K., Simaiova V., Kolvek F., Hornakova P., Toth T., et al. PHB/CHIT Scaffold as a Promising Biopolymer in the Treatment of Osteochondral Defects—An Experimental Animal Study. Polymers. 2021;13:1232. doi: 10.3390/polym13081232. PubMed DOI PMC
Bakhtiari S.S.E., Karbasi S., Toloue E.B. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. Int. J. Biol. Macromol. 2020;166:986–998. doi: 10.1016/j.ijbiomac.2020.10.255. PubMed DOI
Ivanova D.G., Yaneva Z.L. Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy. BioRes. Open Access. 2020;9:64–72. doi: 10.1089/biores.2019.0028. PubMed DOI PMC
Lee D.-S., Cho Y.-S., Je J.-Y. Antioxidant and Antibacterial Activities of Chitosan-Phloroglucinol Conjugate. Fish. Aquat. Sci. 2013;16:229–235. doi: 10.5657/FAS.2013.0229. DOI
Park P.J., Je J.Y., Kim S.K. Free radical scavenging activities of differently deacylated chitosans using an ESR spectrometer. Carbohydr. Polym. 2004;55:17–22. doi: 10.1016/j.carbpol.2003.05.002. DOI
Lee S.-H., Ryu B., Je J.-Y., Kim S.-K. Diethylaminoethyl chitosan induces apoptosis in HeLa cells via activation of caspase-3 and p53 expression. Carbohydr. Polym. 2011;84:571–578. doi: 10.1016/j.carbpol.2010.12.027. DOI
Victor R.D.S., Santos A.M.D.C., De Sousa B.V., Neves G.D.A., Santana L.N.D.L., Menezes R.R. A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials. 2020;13:4995. doi: 10.3390/ma13214995. PubMed DOI PMC
Zhu Y., Zhang Y., Zhou Y. Application progress of modified chitosan and its composite biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2022;23:6574. doi: 10.3390/ijms23126574. PubMed DOI PMC
Lizardi-Mendoza J., Monal W.M.A., Valencia F.M.G. Chemical characteristics and functional properties of chitosan. In: Bautista-Banos S., Romanazzi G., Jimenez-Aparicio A., editors. Chitosan in the Preservation of Agricultural Commodities. Elsevier; Amsterdam, The Netherlands: 2016. pp. 3–31.
Olanipekun E.O., Ayodele O., Olatunde O.C., Olusegun S.J. Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential. Int. J. Biol. Macromol. 2021;183:1971–1977. doi: 10.1016/j.ijbiomac.2021.05.162. PubMed DOI
Giretová M., Medvecky L., Petrovova E., Cizkova D., Danko J., Mudronova D., Slovinska L., Bures R. Polyhydroxy-butyrate/Chitosan 3D scaffolds promote in vitro and in vivo chondrogenesis. Appl. Biochem. Biotechnol. 2019;189:556–575. doi: 10.1007/s12010-019-03021-1. PubMed DOI
Pulingam T., Appaturi J.N., Parumasivam T., Ahmad A., Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers. 2022;14:2141. doi: 10.3390/polym14112141. PubMed DOI PMC
Nowak-Sliwinska P., Segura T., Iruela-Arispe M.L. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis. 2014;17:779–804. doi: 10.1007/s10456-014-9440-7. PubMed DOI PMC
Chavakis E., Dimmer S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler. Thromb. Vasc. Biol. 2002;22:887–893. doi: 10.1161/01.ATV.0000017728.55907.A9. PubMed DOI
Anderson S.M., Siegman S.N., Segura T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials. 2011;32:7432–7443. doi: 10.1016/j.biomaterials.2011.06.027. PubMed DOI PMC
Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307. doi: 10.1038/nature10144. PubMed DOI PMC
Ribatti D. The chick embryo chorioallantoic membrane as a model for tumor biology. Exp. Cell Res. 2014;328:314–324. doi: 10.1016/j.yexcr.2014.06.010. PubMed DOI
Marinaccio C., Nico B., Ribatti D. Differential expression of angiogenic and anti-angiogenic molecules in the chick embryo chorioallantoic membrane and selected organs during embryonic development. Int. J. Dev. Biol. 2013;57:907–916. doi: 10.1387/ijdb.130317dr. PubMed DOI
Baiguera S., Macchiarini P., Ribatti D. Chorioallantoic membrane for in vivo investigation of tissue-engineered construct biocompatibility. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012;100:1425–1434. doi: 10.1002/jbm.b.32653. PubMed DOI
Valdes T.I., Kreutzer D., Moussy F. The chick chorioallantoic membrane as a novel in vivo model for the testing of bio-materials. J. Biomed. Mater. Res. 2002;62:273–282. doi: 10.1002/jbm.10152. PubMed DOI
Tay H., Du Cheyne C., Demeyere K., De Craene J., De Bels L., Meyer E., Zijlstra A., De Spiegelaere W. Depletion of Embryonic Macrophages Leads to a Reduction in Angiogenesis in the Ex Ovo Chick Chorioallantoic Membrane Assay. Cells. 2020;10:5. doi: 10.3390/cells10010005. PubMed DOI PMC
Chen L., Wang S., Feng Y., Zhang J., Du Y., Zhang J., Van Ongeval C.H., Ni Y., Li Y. Utilisation of chick embryo chori-oallantoic membrane as a model platform for imaging-navigated biomedical research. Cells. 2021;10:463. doi: 10.3390/cells10020463. PubMed DOI PMC
Maina J.N. The Biology of the Avian Respiratory System. Springer; Cham, Switzerland: 2017. Structure and Function of the Shell and the Chorioallantoic Membrane of the Avian Egg: Embryonic Respiration; pp. 219–247. DOI
Maksimov V.F., Korostyshevskaya I.M., Kurganov S.A. Functional morphology of chorioallantoic vascular network in chicken. Bull. Exp. Biol. Med. 2006;142:367–371. doi: 10.1007/s10517-006-0368-9. PubMed DOI
Makanya A.N., Dimova I., Koller T., Styp-Rekowska B., Djonov V. Dynamics of the Developing Chick Chorioallantoic Membrane Assessed by Stereology, Allometry, Immunohistochemistry and Molecular Analysis. PLoS ONE. 2016;11:e0152821. doi: 10.1371/journal.pone.0152821. PubMed DOI PMC
Ribatti D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod. Toxicol. 2017;70:97–101. doi: 10.1016/j.reprotox.2016.11.004. PubMed DOI
Zwadlo-Klarwasser G.-C., Görlitz K., Hafemann B., Klee D., Klosterhalfen B. The chorioallantoic membrane of the chick embryo as a simple model for the study of the angiogenic and inflammatory response to biomaterials. J. Mater. Sci. Mater. Med. 2001;12:195–199. doi: 10.1023/a:1008950713001. PubMed DOI
Liu M., Xie S., Zhou J. Use of animal models for the imaging and quantification of angiogenesis. Exp. Anim. 2018;67:1–6. doi: 10.1538/expanim.17-0054. PubMed DOI PMC
Franco N.H., Olsson I., Olsson A. Scientists and the 3Rs: Attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science. Lab. Anim. 2013;48:50–60. doi: 10.1177/0023677213498717. PubMed DOI
Ribatti D. Chapter 5 Chick Embryo Chorioallantoic Membrane as a Useful Tool to Study Angiogenesis. Int. Rev. Cell Mol. Biol. 2008;270:181–224. doi: 10.1016/s1937-6448(08)01405-6. PubMed DOI
Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech. Dev. 2016;141:70–77. doi: 10.1016/j.mod.2016.05.003. PubMed DOI
Ribatti D., Tamma R., Annese T. Chorioallantoic membrane vascularization. A meta-analysis. Exp. Cell Res. 2021;405:112716. doi: 10.1016/j.yexcr.2021.112716. PubMed DOI
Xiao X., Zhou X., Ming H., Zhang J., Huang G., Zhang Z., Li P. Chick Chorioallantoic Membrane Assay: A 3D Animal Model for Study of Human Nasopharyngeal Carcinoma. PLoS ONE. 2015;10:e0130935. doi: 10.1371/journal.pone.0130935. PubMed DOI PMC
Gorustovich A.A., Vargas G.E., Bretcanu O., Mesones R.V., López J.M.P., Boccaccini A.R. Novel bioassay to evaluate biocompatibility of bioactive glass scaffolds for tissue engineering. Adv. Appl. Ceram. 2008;107:274–276. doi: 10.1179/174367508X306541. DOI
Tomco M., Petrovova E., Giretova M., Almasiova V., Holovska K., Cigankova V., Jenca A., Jencova J., Boldizar M., Balazs K., et al. In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model. Anat. Sci. Int. 2016;92:569–580. doi: 10.1007/s12565-016-0362-x. PubMed DOI
Klueh U., Dorsky D.I., Moussy F., Kreutzer D.L. Ex ova chick chorioallantoic membrane as a novel model for evaluation of tissue responses to biomaterials and implants. J. Biomed. Mater. Res. 2003;67:838–843. doi: 10.1002/jbm.a.10059. PubMed DOI
Oates M., Chen R., Duncan M., Hunt J. The angiogenic potential of three-dimensional open porous synthetic matrix materials. Biomaterials. 2007;28:3679–3686. doi: 10.1016/j.biomaterials.2007.04.042. PubMed DOI
Samourides A., Browning L., Hearnden V., Chen B. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Mater. Sci. Eng. C. 2019;108:110384. doi: 10.1016/j.msec.2019.110384. PubMed DOI
Medvecky L., Giretova M., Stulajterova R. Properties and in vitro characterization of polyhydroxybutyrate–chitosan scaffolds prepared by modified precipitation method. J. Mater. Sci. Mater. Electron. 2013;25:777–789. doi: 10.1007/s10856-013-5105-0. PubMed DOI
Giretova M., Medvecky L., Stulajterova R., Sopcak T., Briancin J., Tatarkova M. Effect of enzymatic degradation of chitosan in polyhydroxabutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response. J. Mater. Sci. Mater. Med. 2016;27:181. doi: 10.1007/s10856-016-5801-7. PubMed DOI
Luptakova L., Dvorcakova S., Demcisakova Z., Belbahri L., Holovska K., Petrovova E. Dimethyl Sulfoxide: Morphological, Histological, and Molecular View on Developing Chicken Liver. Toxics. 2021;9:55. doi: 10.3390/toxics9030055. PubMed DOI PMC
Gheorghescu A., Thompson J. Delayed vasculogenesis and impaired angiogenesis due to altered Ang-2 and VE-cadherin levels in the chick embryo model following exposure to cadmium. Pediatr. Surg. Int. 2015;32:175–186. doi: 10.1007/s00383-015-3830-9. PubMed DOI
Stock U.A., Vacanti J.P. Tissue Engineering: Current State and Prospects. Annu. Rev. Med. 2001;52:443–451. doi: 10.1146/annurev.med.52.1.443. PubMed DOI
Klagsbrun M., Knighton D., Folkman J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 1976;36:110–114. PubMed
Kohli N., Sawadkar P., Ho S., Sharma V., Snow M., Powell S., Woodruff M.A., Hook L., Garcia-Gareta E. Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimized ex ovo chorioallantoic membrane model. J. Tissue. Eng. 2020;11:1–15. doi: 10.1177/2041731420901621. PubMed DOI PMC
Rosengren A., Bjursten L.M. Pore size in implanted polypropylene filters is critical for tissue organization. J. Biomed. Mater. Res. 2003;67A:918–926. doi: 10.1002/jbm.a.10509. PubMed DOI
Magnaudeix A., Usseglio J., Lasgorceix M., Lalloue F., Damia C., Brie J., Pascaud-Mathieu P., Champion E. Quantitative analysis of vascular colonization and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) model. Acta. Biomater. 2016;38:179–189. doi: 10.1016/j.actbio.2016.04.039. PubMed DOI
Van Tienen T.G., Heijkants R.G., Buma P., de Groot J.H., Pennings A.J., Veth R.P. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials. 2001;23:1731–1738. doi: 10.1016/S0142-9612(01)00280-0. PubMed DOI
D´Arcy P.F., Howard E.M. A new anti-inflammatory test, utilizing the chorio-allantoic membrane of the chick embryo. Br. J. Pharmac. Chemother. 1967;29:378–387. doi: 10.1111/j.1476-5381.1967.tb01969.x. PubMed DOI PMC
Ribatti D., Nico B., Vacca A., Presta M. The gelatin sponge–chorioallantoic membrane assay. Nat. Protoc. 2006;1:85–91. doi: 10.1038/nprot.2006.13. PubMed DOI
Nanka O., Peumans W.J., Van Damme E.J., Pfuller U., Valasek P., Halata Z., Schumacher U., Grim M. Lectin histo-chemistry of microvascular endothelium in chick and quail musculature. Anat. Emrbyol. 2001;204:407–411. doi: 10.1007/s004290100212. PubMed DOI
Jilani S.M., Murphy T.J. Thai, S.N.M.; Eichmann, A.; Alva, J.A.; Iruela-Arispe, M.L. Selective binding of lectins to embryonic chicken vasculature. J. Histochem. Cytochem. 2003;51:597–604. doi: 10.1177/002215540305100505. PubMed DOI
Hong K.H., Ryu J., Han K.H. Monocyte chemoattractant protein-1–induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood. 2005;105:1405–1407. doi: 10.1182/blood-2004-08-3178. PubMed DOI
Majd H., Scherer S.S., Boo S., Ramondetti S., Cambridge E., Raffoul W., Friedrich M., Pittet B., Pioletti D., Hinz B., et al. Novel micropatterns mechanically control fibrotic reactions at the surface of silicone implants. Biomaterials. 2015;54:136–147. doi: 10.1016/j.biomaterials.2015.03.027. PubMed DOI
Emde B., Heinen A., Gödecke A., Bottermann K. Wheat germ agglutinin staining as a suitable method for detection and quantification of fibrosis in cardiac tissue after myocardial infarction. Eur. J. Histochem. 2014;58:2448. doi: 10.4081/ejh.2014.2448. PubMed DOI PMC
Du Chayne C.H., Smeets M., De Spiegelaere W. Techniques used to asses intussusceptive angiogenesis: A systematic review. Dev. Dyn. 2021;250:1–13. PubMed
Tavakkoli H., Attaran R., Khosravi A., Salari Z., Salarkia E., Dabiri S., Mosallanejad S.S. Vascular alteration in relation to fosfomycine: In silico and in vivo investigations using a chick embryo model. Biomed. Pharmacother. 2019;118:109240. doi: 10.1016/j.biopha.2019.109240. PubMed DOI
Rizzi A., Benagiano V., Ribatti D. Angiogenesis versus arteriogenesis. Rom. J. Morphol. Embryol. 2017;58:15–19. PubMed
Tufan A.C., Tufan N.L.S. The Chick Embryo Chorioallantoic Membrane as a Model System for the Study of Tumor Angiogenesis, Invasion and Development of Anti-Angiogenic Agents. Curr. Cancer Drug Targets. 2005;5:249–266. doi: 10.2174/1568009054064624. PubMed DOI
Talavera-Adame D., Xiong Y., Zhao T., Arias A.E., Sierra-Honigmann M.R., Farkas D.L. Quantitative and morphometric evaluation of the angiogenic effects of leptin. J. Biomed. Opt. 2008;13:064017. doi: 10.1117/1.3028010. PubMed DOI
Zijlstra A., Lewis J.D. Visualization and quantification of de novo angiogenesis in ex ovo chicken embryos. In: Zudaire E., Cuttitta F., editors. The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Application. Springer; Dordrecht, The Netherlands: 2012. pp. 217–240.
Ferra N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999;56:794–814. doi: 10.1046/j.1523-1755.1999.00610.x. PubMed DOI
Jones P.F., McClain J., Robinson D.M., Sato T.N., Yancopoulos G.D. Identification and characterization of chicken cDNAs encoding the endothelial cell-specific receptor tyrosine kinase Tie2 and its ligands, the angiopoietins. Angiogenesis. 1998;2:357–364. doi: 10.1023/A:1009251004253. PubMed DOI
Buríková M., Bilčík B., Máčajová M., Výboh P., Bizik J., Mateašík A., Čavarga I., Miškovský P. Hypericin fluorescence kinetics in the presence of low density lipoproteins: Study on quail CAM assay for topical delivery. Gen. Physiol. Biophys. 2016;35:459–468. doi: 10.4149/gpb_2016014. PubMed DOI