Novel approach for biomaterial assessment: utilizing the Ex Ovo quail cam assay for biocompatibility pre-screening
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39570443
PubMed Central
PMC11582168
DOI
10.1007/s11259-024-10574-y
PII: 10.1007/s11259-024-10574-y
Knihovny.cz E-zdroje
- Klíčová slova
- Angiogenesis, Avian animal model, Bone regeneration, Chitosan, Polyhydroxybutyrate,
- MeSH
- biokompatibilní materiály * farmakologie MeSH
- chitosan * farmakologie MeSH
- chorioalantoická membrána * účinky léků MeSH
- fyziologická neovaskularizace účinky léků MeSH
- křepelky a křepelovití embryologie MeSH
- testování materiálů MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály * MeSH
- chitosan * MeSH
In recent years, the chorioallantoic membrane (CAM) has emerged as a crucial component of biocompatibility testing for biomaterials designed for regenerative strategies and tissue engineering applications. This study explores angiogenic potential of an innovative acellular and porous biopolymer scaffold, based on polyhydroxybutyrate and chitosan (PHB/CHIT), using the ex ovo quail CAM assay as an alternative to the conventional chick CAM test. On embryonic day 6 (ED6), we placed the tested biomaterials on the CAM alone or soaked them with various substances, including vascular endothelial growth factor (VEGF-A), saline, or the endogenous angiogenesis inhibitor Angiostatin. After 72 h (ED9), we analyzed blood vessels formation, a sign of ongoing angiogenesis, in the vicinity of the scaffold and within its pores. We employed marker for cell proliferation (PHH3), embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and endothelial cells (QH1) for morphological and histochemical analysis. Our findings demonstrated the robust angiogenic potential of the untreated scaffold without additional influence from the angiogenic factor VEGF-A. Furthermore, gene expression analysis revealed an upregulation of pro-angiogenic growth factors, including VEGF-A, ANG-2, and VE-Cadherin after 5 days of implantation, indicative of a pro-angiogenic microenvironment. These results underscore the inherent angiogenic potential of the PHB/CHIT composite. Additionally, monitoring of CAM microvilli growing to the scaffold provides a methodology for investigating the biocompatibility of materials using the ex ovo quail CAM assay as a suitable alternative model compared to the chicken CAM platform. This approach offers a rapid screening method for biomaterials in the field of tissue repair/regeneration and engineering.
Institute of Materials Research The Slovak Academy of Sciences Kosice Slovakia
University of Veterinary Medicine and Pharmacy in Kosice Komenskeho 73 Kosice 041 81 Slovakia
Zobrazit více v PubMed
Abhinand CS, Raju R, Soumya SJ et al (2016) VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J Cell Commun Signal 10:347–354. 10.1007/s12079-016-0352-8 PubMed PMC
Ainsworth SJ, Stanley RL, Evans DJR (2010) Developmental stages of the Japanese quail. J Anat 216:3–15. 10.1111/j.1469-7580.2009.01173.x PubMed PMC
Akwii RG, Sajib MS, Zahra FT et al (2019) Role of Angiopoietin-2 in vascular physiology and pathophysiology. 10.3390/cells8050471. Cells 8 PubMed PMC
Aleem AR, Shahzadi L, Tehseen S et al (2019) Amino acids loaded chitosan/collagen based new membranes stimulate angiogenesis in chorioallantoic membrane assay. Int J Biol Macromol 140:401–406. 10.1016/j.ijbiomac.2019.08.095 PubMed
Bai J, Pang Y, Zhang X et al (2016) Study on the Morphological Development of Quail Embryos. Rev Bras Cienc Avic 18:91–93. 10.1590/1806-9061-2015-0177
Cattalini JP, Roether J, Hoppe A et al (2016) Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering. Biomed Mater 11:065003. 10.1088/1748-6041/11/6/065003 PubMed
Colman H, Giannini C, Huang L et al (2006) Assessment and Prognostic significance of Mitotic Index using the mitosis marker phospho-histone H3 in low and intermediate-grade infiltrating Astrocytomas. Am J Surg Pathol 30:657–664. 10.1097/01.pas.0000202048.28203.25 PubMed
Dejana E, Bazzoni G, Lampugnani MG (1999) Vascular endothelial (VE)-Cadherin: only an intercellular glue? Exp Cell Res 252:13–19. 10.1006/excr.1999.4601 PubMed
Demcisakova Z, Luptakova L, Tirpakova Z et al (2022) Evaluation of Angiogenesis in an Acellular Porous Biomaterial based on Polyhydroxybutyrate and Chitosan using the Chicken Ex Ovo Chorioallantoic membrane model. Cancers (Basel) 14:4194. 10.3390/cancers14174194 PubMed PMC
Doyle C, Tanner ET, Bonfield W (1991) In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 12:841–847. 10.1016/0142-9612(91)90072-I PubMed
Dünker N, Jendrossek V (2019) Implementation of the Chick Chorioallantoic membrane (CAM) model in Radiation Biology and Experimental Radiation Oncology Research. Cancers (Basel) 11:1499. 10.3390/cancers11101499 PubMed PMC
Duong CN, Vestweber D (2020) Mechanisms ensuring endothelial junction integrity beyond VE-Cadherin. Front Physiol 11. 10.3389/fphys.2020.00519. PubMed PMC
Dvořánková B, Lacina L, Smetana K (2018) Isolation of normal fibroblasts and their Cancer-Associated counterparts (CAFs) for Biomedical Research. In: Turksen K (ed) Skin stem cells. Methods in Molecular Biology. Humana, New York, pp 393–406. 10.1007/7651_2018_137 PubMed
Ellermann E, Meyer N, Cameron RE et al (2023) In vitro angiogenesis in response to biomaterial properties for bone tissue engineering: a review of the state of the art. Regen Biomater 10. 10.1093/rb/rbad027 PubMed PMC
Ezdakova MI, Matveeva DK, Andreeva ER (2022) Short-term interaction with endothelial cells enhances angiogenic activity of growth-arrested mesenchymal stromal cells in vitro and in Ovo. Bull Exp Biol Med 174:125–130. 10.1007/s10517-022-05660-7 PubMed
Felcht M, Luck R, Schering A et al (2012) Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest 122:1991–2005. 10.1172/JCI58832 PubMed PMC
Félétou M (2011) The endothelium, part I: multiple functions of the endothelial cells -- Focus on Endothelium-Derived Vasoactive mediators. Colloquium Ser Integr Syst Physiology: Molecule Function 3:1–306. 10.4199/C00031ED1V01Y201105ISP019
Gentile LB, Piva B, Diaz BL (2011) Hypertonic stress induces VEGF production in human Colon Cancer Cell Line Caco-2: inhibitory role of Autocrine PGE2. PLoS ONE 6:e25193. 10.1371/journal.pone.0025193 PubMed PMC
Giretova M, Medvecky L, Stulajterova R et al (2016) Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response. J Mater Sci Mater Med 27:181. 10.1007/s10856-016-5801-7 PubMed
Giretova M, Medvecky L, Petrovova E et al (2019) Polyhydroxybutyrate/Chitosan 3D scaffolds promote in Vitro and in Vivo Chondrogenesis. Appl Biochem Biotechnol 189:556–575. 10.1007/s12010-019-03021-1 PubMed
Guillén-Carvajal K, Valdez-Salas B, Beltrán-Partida E et al (2023) Chitosan, gelatin, and Collagen Hydrogels for bone regeneration. Polym (Basel) 15:2762. 10.3390/polym15132762 PubMed PMC
Hessenauer MET, Lauber K, Zuchtriegel G et al (2018) Vitronectin promotes the vascularization of porous polyethylene biomaterials. Acta Biomater 82:24–33. 10.1016/j.actbio.2018.10.004 PubMed
Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491. 10.1016/j.biomaterials.2005.02.002 PubMed
Klueh U, Dorsky DI, Moussy F et al (2003) Ex Ova chick chorioallantoic membrane as a novel model for evaluation of tissue responses to biomaterials and implants. J Biomed Mater Res A 67A:838–843. 10.1002/jbm.a.10059 PubMed
Kundeková B, Máčajová M, Meta M et al (2021) Chorioallantoic membrane models of various avian species: differences and applications. Biology (Basel) 10:301. 10.3390/biology10040301 PubMed PMC
Lazarovici P, Gazit A, Staniszewska I et al (2006) Nerve growth factor (NGF) promotes angiogenesis in the Quail Chorioallantoic membrane. Endothelium 13:51–59. 10.1080/10623320600669053 PubMed
Lee HJ, Hong YJ, Kim M (2021) Angiogenesis in chronic inflammatory skin disorders. Int J Mol Sci 22:12035. 10.3390/ijms222112035 PubMed PMC
Liu M, Xie S, Zhou J (2018) Use of animal models for the imaging and quantification of angiogenesis. Exp Anim 67:1–6. 10.1538/expanim.17-0054 PubMed PMC
Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Nat Acad Sci 99:11205–11210 PubMed PMC
Macajova M, Cavarga I, Sykorova M et al (2020) Modulation of angiogenesis by topical application of leptin and high and low molecular heparin using the Japanese quail chorioallantoic membrane model. Saudi J Biol Sci 27:1488–1493. 10.1016/j.sjbs.2020.04.013 PubMed PMC
Máčajová M, Huntošová V, Meta M et al (2022) Quail Chorioallantoic membrane - A Tool for photodynamic diagnosis and therapy. J Visualized Experiments. 10.3791/63422 PubMed
Mahapatra C, Kumar P, Paul MK et al (2022) Angiogenic stimulation strategies in bone tissue regeneration. Tissue Cell 79:101908. 10.1016/j.tice.2022.101908 PubMed
Maksimov VF, Korostyshevskaya IM, Kurganov SA (2006) Functional morphology of chorioallantoic vascular network in chicken. Bull Exp Biol Med 142:367–371. 10.1007/s10517-006-0368-9 PubMed
Mangir N, Dikici S, Claeyssens F et al (2019) Using ex Ovo Chick Chorioallantoic membrane (CAM) assay to evaluate the biocompatibility and angiogenic response to Biomaterials. ACS Biomater Sci Eng 5:3190–3200. 10.1021/acsbiomaterials.9b00172 PubMed
Marew T, Birhanu G (2021) Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regen Ther 18:102–111. 10.1016/j.reth.2021.05.001 PubMed PMC
Medvecky L, Giretova M, Stulajterova R (2014) Properties and in vitro characterization of polyhydroxybutyrate–chitosan scaffolds prepared by modified precipitation method. J Mater Sci Mater Med 25:777–789. 10.1007/s10856-013-5105-0 PubMed
Nan W, He Y, Wang S et al (2023) Molecular mechanism of VE-cadherin in regulating endothelial cell behaviour during angiogenesis. Front Physiol 14:1234104. 10.3389/fphys.2023.1234104 PubMed PMC
Naňka O, Peumans WJ, Van Damme EJM et al (2001) Lectin histochemistry of microvascular endothelium in chick and quail musculature. Anat Embryol (Berl) 204:407–411. 10.1007/s004290100212 PubMed
Neuhaus W, Reininger-Gutmann B, Rinner B et al (2022) The current status and work of three rs centres and platforms in Europe*. Altern Lab Anim 50:381–413. 10.1177/02611929221140909 PubMed
Papoutsi M, Tomarev SI, Eichmann A et al (2001) Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev Dyn 222:238–251. 10.1002/dvdy.1187 PubMed
Pardanaud L, Altmann C, Kitos P et al (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349. 10.1242/dev.100.2.339 PubMed
Parsons-Wingerter P, Lwai B, Yang MC et al (1998) A Novel assay of Angiogenesis in the Quail Chorioallantoic membrane: stimulation by bFGF and inhibition by Angiostatin according to Fractal Dimension and Grid Intersection. Microvasc Res 55:201–214. 10.1006/mvre.1998.2073 PubMed
Petrovova E, Giretova M, Kvasilova A et al (2019) Preclinical alternative model for analysis of porous scaffold biocompatibility in bone tissue engineering. Altex 36:121–130. 10.14573/altex.1807241 PubMed
Petrovova E, Tomco M, Holovska K et al (2021) PHB/CHIT Scaffold as a Promising Biopolymer in the treatment of Osteochondral Defects—An experimental animal study. Polym (Basel) 13:1232. 10.3390/polym13081232 PubMed PMC
Ribatti D (2016) The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev 141:70–77. 10.1016/j.mod.2016.05.003 PubMed
Ribatti D (2017) The chick embryo chorioallantoic membrane (CAM) assay. Reprod Toxicol 70:97–101. 10.1016/j.reprotox.2016.11.004 PubMed
Ribatti D, Nico B, Vacca A et al (2006) The gelatin sponge–chorioallantoic membrane assay. Nat Protoc 1:85–91. 10.1038/nprot.2006.13 PubMed
Ribatti D, Annese T, Tamma R (2020) The use of the chick embryo CAM assay in the study of angiogenic activiy of biomaterials. Microvasc Res 131:104026. 10.1016/j.mvr.2020.104026 PubMed
Schneider-Stock R, Flügen G (2023) Editorial for special issue: the Chorioallantoic membrane (CAM) model—traditional and state-of-the art applications: the 1st International CAM Conference. Cancers (Basel) 15:772. 10.3390/cancers15030772 PubMed PMC
Scholz A, Plate KH, Reiss Y (2015) Angiopoietin-2: a multifaceted cytokine that functions in both angiogenesis and inflammation. Ann N Y Acad Sci 1347:45–51. 10.1111/nyas.12726 PubMed
Sun Z, Li X, Massena S et al (2012) VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med 209:1363–1377. 10.1084/jem.20111343 PubMed PMC
Tetzlaff MT, Curry JL, Ivan D et al (2013) Immunodetection of phosphohistone H3 as a surrogate of mitotic figure count and clinical outcome in cutaneous melanoma. Mod Pathol 26:1153–1160. 10.1038/modpathol.2013.59 PubMed
Vargas GE, Haro Durand LA, Cadena V et al (2013) Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. J Mater Sci Mater Med 24:1261–1269. 10.1007/s10856-013-4892-7 PubMed
Wallez Y, Vilgrain I, Huber P (2006) Angiogenesis: the VE-Cadherin switch. Trends Cardiovasc Med 16:55–59. 10.1016/j.tcm.2005.11.008 PubMed
Wang X, Bove AM, Simone G et al (2020) Molecular bases of VEGFR-2-Mediated physiological function and pathological role. Front Cell Dev Biol 8. 10.3389/fcell.2020.599281 PubMed PMC
Woloszyk A, Mitsiadis TA (2017) Angiogenesis within stem cell–Seeded Silk scaffolds cultured on the Chorioallantoic membrane and visualized by 3D imaging. Curr Protoc Stem Cell Biol 41. 10.1002/cpsc.27 PubMed
Zhu P, Zhang C-B, Yang P et al (2016) Phosphohistone H3 (pHH3) is a prognostic and epithelial to mesenchymal transition marker in diffuse gliomas. Oncotarget 7:45005–45014. 10.18632/oncotarget.7154 PubMed PMC