NIfTI-MRS: A standard data format for magnetic resonance spectroscopy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R00 AG062230
NIA NIH HHS - United States
S10 OD012336
NIH HHS - United States
102584
Wellcome Trust - United Kingdom
R01 EB023963
NIBIB NIH HHS - United States
R01 EB028259
NIBIB NIH HHS - United States
P41 EB015909
NIBIB NIH HHS - United States
S10 OD021648
NIH HHS - United States
R01 EB016089
NIBIB NIH HHS - United States
102584/Z/13/Z
Wellcome Trust - United Kingdom
P41 EB031771
NIBIB NIH HHS - United States
Wellcome Trust - United Kingdom
203139
Wellcome Trust - United Kingdom
PubMed
36089825
PubMed Central
PMC7613677
DOI
10.1002/mrm.29418
Knihovny.cz E-zdroje
- Klíčová slova
- MRS, MRSI, open data format, spectroscopy, visualization,
- MeSH
- informatika MeSH
- magnetická rezonanční spektroskopie MeSH
- magnetická rezonanční tomografie * MeSH
- neurozobrazování * MeSH
- software MeSH
- technologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
PURPOSE: Multiple data formats in the MRS community currently hinder data sharing and integration. NIfTI-MRS is proposed as a standard spectroscopy data format, implemented as an extension to the Neuroimaging informatics technology initiative (NIfTI) format. This standardized format can facilitate data sharing and algorithm development as well as ease integration of MRS analysis alongside other imaging modalities. METHODS: A file format using the NIfTI header extension framework incorporates essential spectroscopic metadata and additional encoding dimensions. A detailed description of the specification is provided. An open-source command-line conversion program is implemented to convert single-voxel and spectroscopic imaging data to NIfTI-MRS. Visualization of data in NIfTI-MRS is provided by development of a dedicated plugin for FSLeyes, the FMRIB Software Library (FSL) image viewer. RESULTS: Online documentation and 10 example datasets in the proposed format are provided. Code examples of NIfTI-MRS readers are implemented in common programming languages. Conversion software, spec2nii, currently converts 14 formats where data is stored in image-space to NIfTI-MRS, including Digital Imaging and Communications in Medicine (DICOM) and vendor proprietary formats. CONCLUSION: NIfTI-MRS aims to solve issues arising from multiple data formats being used in the MRS community. Through a single conversion point, processing and analysis of MRS data are simplified, thereby lowering the barrier to use of MRS. Furthermore, it can serve as the basis for open data sharing, collaboration, and interoperability of analysis programs. Greater standardization and harmonization become possible. By aligning with the dominant format in neuroimaging, NIfTI-MRS enables the use of mature tools present in the imaging community, demonstrated in this work by using a dedicated imaging tool, FSLeyes, for visualization.
Alberta Children's Hospital Research Institute University of Calgary Calgary Alberta Canada
Czech Academy of Sciences Institute of Scientific Instruments Brno Czech Republic
Department of Biomedical Engineering Brno University of Technology Brno Czech Republic
Department of Radiology University of Calgary Calgary Alberta Canada
Department of Radiology Weill Cornell Medicine New York New York USA
Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
School of Health Sciences Purdue University West Lafayette Indiana USA
Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana USA
Zobrazit více v PubMed
Bednařík P, Tkáč I, Giove F, et al. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla. J Cereb Blood Flow Metab. 2015;35:601‐610. PubMed PMC
Palombo M, Shemesh N, Ronen I, Valette J. Insights into brain microstructure from in vivo DW‐MRS. Neuroimage. 2018;182:97‐116. PubMed
Spencer RG, Balschi JA, Leigh JS, Ingwall JS. ATP synthesis and degradation rates in the perfused rat heart. 31P‐nuclear magnetic resonance double saturation transfer measurements. Biophys J. 1988;54:921‐929. PubMed PMC
Near J, Harris AD, Juchem C, et al. Preprocessing, analysis and quantification in single‐voxel magnetic resonance spectroscopy: experts' consensus recommendations. NMR Biomed. 2021;34:e4257. PubMed PMC
C.8.14 MR Spectroscopy Modules. Available at: http://dicom.nema.org/medical/dicom/2017c/output/chtml/part03/sect_C.8.14.html. Accessed December 16, 2020.
Cox RW, Ashburner J, Breman H, et al. A (sort of) new image data format standard: NiFTI‐1. In Proceedings of the 10th Annual Meeting of the Organization for Human Brain Mapping (OHBM), Budapest, Hungary, 2004.
McCarthy P. FSLeyes. 2020. Available at: https://10.5281/zenodo.3937147. DOI
Clarke WT, Mikkelsen M, Oeltzschner G, et al. NifTI‐MRS Format Specification. 2021. Available at: https://10.5281/zenodo.5084789. DOI
Pezoa F, Reutter JL, Suarez F, Ugarte M, Vrgoč D. Foundations of JSON schema. Proceedings of the 25th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee; 2016:263‐273.
Introducing JSON: ECMA‐404 The JSON Data Interchange Standard. Available at: https://www.json.org/json‐en.html. Accessed December 16, 2020.
Cox RW. Official definition of the nifti1 header. Available at: https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h. Accessed July 9, 2021.
Reynolds R. Official definition of the nifti2 header. Available at: https://nifti.nimh.nih.gov/pub/dist/doc/nifti2.h. Accessed July 9, 2021.
Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J. A probabilistic atlas of the human brain: theory and rationale for its development. Neuroimage. 1995;2:89‐101. PubMed
Levitt MH. The signs of frequencies and phases in NMR. J Magn Reson. 1997;126:164‐182. PubMed
Clarke WT. NifTI‐MRS Example Data; 2021. Available at: http://10.5281/zenodo.5085449. DOI
Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 1998;11:266‐272. PubMed
Clarke WT, Stagg CJ, Jbabdi S. FSL‐MRS: an end‐to‐end spectroscopy analysis package. Magn Reson Med. 2021;85:2950‐2964. PubMed PMC
Inati SJ, Naegele JD, Zwart NR, et al. ISMRM raw data format: a proposed standard for MRI raw datasets. Magn Reson Med. 2017;77:411‐421. PubMed PMC
Clarke W. http://github.com/wtclarke/mrs_nifti_standard. 2020. (Accessed June 21, 2022)
Oeltzschner G, Zöllner HJ, Hui SCN, et al. Osprey: open‐source processing, reconstruction & estimation of magnetic resonance spectroscopy data. J Neurosci Methods. 2020;343:108827. PubMed PMC
Wilson M. Adaptive baseline fitting for MR spectroscopy analysis. Magn Reson Med. 2021;85:13‐29. PubMed
Wilson M. Spant: an R package for magnetic resonance spectroscopy analysis. Joss. 2021;6:3646.
Soher B, Semanchuk P, Todd D, Steinberg J, Young K. VeSPA: integrated applications for RF pulse design, spectral simulation and MRS data analysis. In Proceedings of the 19th Annual Meeting of ISMRM, Montréal, Québec, Canada, 2011. p. 1410.
Simpson R, Devenyi GA, Jezzard P, Hennessy TJ, Near J. Advanced processing and simulation of MRS data using the FID appliance (FID‐A)—an open source, MATLAB‐based toolkit. Magn Reson Med. 2017;77:23‐33. PubMed
Gorgolewski KJ, Auer T, Calhoun VD, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016;3:160044. PubMed PMC
Poldrack RA, Gorgolewski KJ. OpenfMRI: open sharing of task fMRI data. Neuroimage. 2017;144:259‐261. PubMed PMC
Markiewicz CJ, Gorgolewski KJ, Feingold F, et al. OpenNeuro: an open resource for sharing of neuroimaging data. eLife 2021;10:e71774. PubMed PMC
Jiang SH, Coello E, Louis MS, Breedlove KM, Lin AP. MRSDB: a scalable multisite data library for clinical and machine learning applications of magnetic resonance spectroscopy. In Proceedings of the 29th Annual Meeting of ISMRM, Vancouver, British Columbia, Canada, 2021. p. 3764.
Zacharopoulos G, Sella F, Kadosh RC. The impact of a lack of mathematical education on brain development and future attainment. Proc Natl Acad Sci U S A. 2021;118:e2013155118. PubMed PMC
Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018;14:590‐605. PubMed PMC
Lin A, Andronesi O, Bogner W, et al. Minimum reporting standards for in vivo magnetic resonance spectroscopy (MRSinMRS): Experts' consensus recommendations. NMR Biomed. 2021;34:e4484. PubMed PMC
Glasser MF, Smith SM, Marcus DS, et al. The Human Connectome Project's neuroimaging approach. Nat Neurosci. 2016;19:1175‐1187. PubMed PMC
Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:162‐173. PubMed
Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782‐790. PubMed
Friston KJ, ed. Statistical Parametric Mapping: the Analysis of Funtional Brain Images. 1st ed. Elsevier/Academic Press; 2007.