Efficient Matching-Based Parallel Task Offloading in IoT Networks
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2022/5
Ministry of Education
PubMed
36146254
PubMed Central
PMC9500985
DOI
10.3390/s22186906
PII: s22186906
Knihovny.cz E-zdroje
- Klíčová slova
- Internet of Things, externalities problem, fog computing, matching theory, partial task offloading, task offloading,
- MeSH
- algoritmy * MeSH
- počítačová simulace MeSH
- reprodukovatelnost výsledků MeSH
- Publikační typ
- časopisecké články MeSH
Fog computing is one of the major components of future 6G networks. It can provide fast computing of different application-related tasks and improve system reliability due to better decision-making. Parallel offloading, in which a task is split into several sub-tasks and transmitted to different fog nodes for parallel computation, is a promising concept in task offloading. Parallel offloading suffers from challenges such as sub-task splitting and mapping of sub-tasks to the fog nodes. In this paper, we propose a novel many-to-one matching-based algorithm for the allocation of sub-tasks to fog nodes. We develop preference profiles for IoT nodes and fog nodes to reduce the task computation delay. We also propose a technique to address the externalities problem in the matching algorithm that is caused by the dynamic preference profiles. Furthermore, a detailed evaluation of the proposed technique is presented to show the benefits of each feature of the algorithm. Simulation results show that the proposed matching-based offloading technique outperforms other available techniques from the literature and improves task latency by 52% at high task loads.
Zobrazit více v PubMed
Giordani M., Polese M., Mezzavilla M., Rangan S., Zorzi M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun. Mag. 2020;58:55–61. doi: 10.1109/MCOM.001.1900411. DOI
Khan W.U., Javed M.A., Nguyen T.N., Khan S., Elhalawany B.M. Energy-Efficient Resource Allocation for 6G Backscatter-Enabled NOMA IoV Networks. IEEE Trans. Intell. Transp. Syst. 2021;23:9775–9785. doi: 10.1109/TITS.2021.3110942. DOI
Malik U.M., Javed M.A., Zeadally S., Islam S.u. Energy efficient fog computing for 6G enabled massive IoT: Recent trends and future opportunities. IEEE Internet Things J. 2021;9:14572–14594. doi: 10.1109/JIOT.2021.3068056. DOI
Ahmed M., Raza S., Mirza M.A., Aziz A., Khan M.A., Khan W.U., Li J., Han Z. A survey on vehicular task offloading: Classification, issues, and challenges. J. King Saud Univ. Comput. Inf. Sci. 2022;34:4135–4162. doi: 10.1016/j.jksuci.2022.05.016. DOI
Ahmed M., Khan W.U., Ihsan A., Li X., Li J., Tsiftsis T.A. Backscatter Sensors Communication for 6G Low-Powered NOMA-Enabled IoT Networks Under Imperfect SIC. IEEE Syst. J. 2022:1–11. doi: 10.1109/JSYST.2022.3194705. DOI
Javed M.A., Nguyen T.N., Mirza J., Ahmed J., Ali B. Reliable Communications for Cybertwin driven 6G IoVs using Intelligent Reflecting Surfaces. IEEE Trans. Ind. Inform. 2022 doi: 10.1109/TII.2022.3151773. DOI
Liu J., Ahmed M., Mirza M.A., Khan W.U., Xu D., Li J., Aziz A., Han Z. RL/DRL Meets Vehicular Task Offloading Using Edge and Vehicular Cloudlet: A Survey. IEEE Internet Things J. 2022;9:8315–8338. doi: 10.1109/JIOT.2022.3155667. DOI
Javed M.A., Zeadally S., Hamida E.B. Data analytics for Cooperative Intelligent Transport Systems. Veh. Commun. 2019;15:63–72. doi: 10.1016/j.vehcom.2018.10.004. DOI
Javed M.A., Zeadally S. AI-Empowered Content Caching in Vehicular Edge Computing: Opportunities and Challenges. IEEE Netw. 2021;35:109–115. doi: 10.1109/MNET.011.2000561. DOI
Xie J., Jia Y., Chen Z., Nan Z., Liang L. Efficient task completion for parallel offloading in vehicular fog computing. China Commun. 2019;16:42–55. doi: 10.23919/JCC.2019.11.004. DOI
Farooq U., Shabir M.W., Javed M.A., Imran M. Intelligent energy prediction techniques for fog computing networks. Appl. Soft Comput. 2021;111:107682. doi: 10.1016/j.asoc.2021.107682. DOI
Tran-Dang H., Kim D.S. FRATO: Fog Resource Based Adaptive Task Offloading for Delay-Minimizing IoT Service Provisioning. IEEE Trans. Parallel Distrib. Syst. 2021;32:2491–2508. doi: 10.1109/TPDS.2021.3067654. DOI
Chiti F., Fantacci R., Picano B. A Matching Theory Framework for Tasks Offloading in Fog Computing for IoT Systems. IEEE Internet Things J. 2018;5:5089–5096. doi: 10.1109/JIOT.2018.2871251. DOI
Liu Z., Wang K., Li K., Zhou M.T., Yang Y. Parallel Scheduling of Multiple Tasks in Heterogeneous Fog Networks; Proceedings of the 2019 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh; Vietnam. 6–8 November 2019; pp. 413–418. DOI
Alimudin A., Ishida Y. Matching-Updating Mechanism: A Solution for the Stable Marriage Problem with Dynamic Preferences. Entropy. 2022;24:263. doi: 10.3390/e24020263. PubMed DOI PMC
Knuth D.E. Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms. American Mathematical Society; Providence, RI, USA: 1997.
Ma J. On Randomized Matching Mechanisms. Econ. Theory. 1996;8:377–381. doi: 10.1007/BF01211824. DOI
Roth A.E. Deferred Acceptance Algorithms: History, Theory, Practice, and Open Questions. National Bureau of Economic Research; Cambridge, MA, USA: 2007. Working Paper 13225. DOI
Liang Z., Liu Y., Lok T.M., Huang K. Multiuser Computation Offloading and Downloading for Edge Computing With Virtualization. IEEE Trans. Wirel. Commun. 2019;18:4298–4311. doi: 10.1109/TWC.2019.2922613. DOI
Zhang G., Shen F., Liu Z., Yang Y., Wang K., Zhou M. FEMTO: Fair and Energy-Minimized Task Offloading for Fog-Enabled IoT Networks. IEEE Internet Things J. 2019;6:4388–4400. doi: 10.1109/JIOT.2018.2887229. DOI
Sahni Y., Cao J., Yang L., Ji Y. Multi-Hop Multi-Task Partial Computation Offloading in Collaborative Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2021;32:1133–1145. doi: 10.1109/TPDS.2020.3042224. DOI
Li H., Li X., Wang W. Joint optimization of computation cost and delay for task offloading in vehicular fog networks. Trans. Emerg. Telecommun. Technol. 2020;31:e3818. doi: 10.1002/ett.3818. DOI
Zhang H., Yang Y., Huang X., Fang C., Zhang P. Ultra-Low Latency Multi-Task Offloading in Mobile Edge Computing. IEEE Access. 2021;9:32569–32581. doi: 10.1109/ACCESS.2021.3061105. DOI
Ning Z., Dong P., Kong X., Xia F. A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things. IEEE Internet Things J. 2019;6:4804–4814. doi: 10.1109/JIOT.2018.2868616. DOI
Thai M.T., Lin Y.D., Lai Y.C., Chien H.T. Workload and Capacity Optimization for Cloud-Edge Computing Systems with Vertical and Horizontal Offloading. IEEE Trans. Netw. Serv. Manag. 2020;17:227–238. doi: 10.1109/TNSM.2019.2937342. DOI
Deb P.K., Misra S., Mukherjee A. Latency-Aware Horizontal Computation Offloading for Parallel Processing in Fog-Enabled IoT. IEEE Syst. J. 2021;16:2537–2544. doi: 10.1109/JSYST.2021.3085566. DOI
Liu Z., Yang Y., Wang K., Shao Z., Zhang J. POST: Parallel Offloading of Splittable Tasks in Heterogeneous Fog Networks. IEEE Internet Things J. 2020;7:3170–3183. doi: 10.1109/JIOT.2020.2965566. DOI
Zu Y., Shen F., Yan F., Shen L., Qin F., Yang R. SMETO: Stable Matching for Energy-Minimized Task Offloading in Cloud-Fog Networks; Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall); Honolulu, HI, USA. 22–25 September 2019; pp. 1–5. DOI
Tran-Dang H., Kim D.S. Impact of Task Splitting on the Delay Performance of Task Offloading in the IoT-enabled Fog Systems; Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC); Jeju Island, Korea. 19–21 October 2021; pp. 661–663. DOI
Bozorgchenani A., Tarchi D., Corazza G. An Energy and Delay-Efficient Partial Offloading Technique for Fog Computing Architectures; Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference; Singapore. 4–8 December 2017; pp. 1–6. DOI
Roth A., Vande Vate J. Random Paths to Stability in Two-Sided Matching. Econometrica. 1990;58:1475–1480. doi: 10.2307/2938326. DOI
Basir R., Qaisar S., Ali M., Naeem M. Cloudlet Selection in Cache-Enabled Fog Networks for Latency Sensitive IoT Applications. IEEE Access. 2021;9:93224–93236. doi: 10.1109/ACCESS.2021.3092819. DOI
Lyu X., Tian H., Sengul C., Zhang P. Multiuser Joint Task Offloading and Resource Optimization in Proximate Clouds. IEEE Trans. Veh. Technol. 2017;66:3435–3447. doi: 10.1109/TVT.2016.2593486. DOI
Bertsimas D., Tsitsiklis J.N. Introduction to Linear Optimization. Volume 6 Athena Scientific; Belmont, MA, USA: 1997.
Baïou M., Balinski M. Many-to-many matching: Stable polyandrous polygamy (or polygamous polyandry) Discret. Appl. Math. 2000;101:1–12. doi: 10.1016/S0166-218X(99)00203-6. DOI
Wu H., Zhang J., Cai Z., Ni Q., Zhou T., Yu J., Chen H., Liu F. Resolving Multi-task Competition for Constrained Resources in Dispersed Computing: A Bilateral Matching Game. IEEE Internet Things J. 2021;8:16972–16983. doi: 10.1109/JIOT.2021.3075673. DOI
Swain C., Sahoo M.N., Satpathy A., Muhammad K., Bakshi S., Rodrigues J.J.P.C., de Albuquerque V.H.C. METO: Matching-Theory-Based Efficient Task Offloading in IoT-Fog Interconnection Networks. IEEE Internet Things J. 2021;8:12705–12715. doi: 10.1109/JIOT.2020.3025631. DOI