Physical activity partly mediates the association between cognitive function and depressive symptoms
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
PZ00P1_180040
Swiss National Science Foundation - Switzerland
U01 AG009740
NIA NIH HHS - United States
P01 AG005842
NIA NIH HHS - United States
P01 AG008291
NIA NIH HHS - United States
P30 AG012815
NIA NIH HHS - United States
R21 AG025169
NIA NIH HHS - United States
HHSN271201300071C
NIA NIH HHS - United States
PubMed
36167692
PubMed Central
PMC9515096
DOI
10.1038/s41398-022-02191-7
PII: 10.1038/s41398-022-02191-7
Knihovny.cz E-zdroje
- MeSH
- cvičení * psychologie MeSH
- deprese * psychologie MeSH
- dospělí MeSH
- kognice MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- stárnutí psychologie MeSH
- zdravotnické přehledy MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Cognitive function, physical activity, and depressive symptoms are intertwined in later life. Yet, the nature of the relationship between these three variables is unclear. Here, we aimed to determine which of physical activity or cognitive function mediated this relationship. We used large-scale longitudinal data from 51,191 adults 50 years of age or older (mean: 64.8 years, 54.7% women) from the Survey of Health, Ageing and Retirement in Europe (SHARE). Results of the longitudinal mediation analyses combined with autoregressive cross-lagged panel models showed that the model with physical activity as a mediator better fitted the data than the model with cognitive function as a mediator. Moreover, the mediating effect of physical activity was 8-9% of the total effect of cognitive function on depressive symptoms. Our findings suggest that higher cognitive resources favor the engagement in physical activity, which contributes to reduced depressive symptoms.
2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Readaptation and Geriatrics University of Geneva Geneva Switzerland
Faculty of Humanities Charles University Prague Czech Republic
LIVES Centre Swiss Centre of Expertise in Life Course Research Lausanne Switzerland
National Institute of Mental Health Klecany Czech Republic
Population Health Laboratory University of Fribourg Fribourg Switzerland
Swiss Center for Affective Sciences University of Geneva Geneva Switzerland
Zobrazit více v PubMed
WHO. Dementia: a public health priority. vol. 112. Geneva, Switzerland: WHO; 2012.
Gopinath B, Kifley A, Flood VM, Mitchell P. Physical activity as a determinant of successful aging over ten years. Sci Rep. 2018;8:1–5. PubMed PMC
Kok RM, Reynolds CF. Management of depression in older adults: a review. JAMA. 2017;317:2114–22. PubMed
Aartsen MJ, Cheval B, Sieber S, Van der Linden BW, Gabriel R, Courvoisier DS, et al. Advantaged socioeconomic conditions in childhood are associated with higher cognitive functioning but stronger cognitive decline in older age. Proc Natl Acad Sci USA. 2019;116:5478–86. PubMed PMC
Cheval B, Sieber S, Guessous I, Orsholits D, Courvoisier DC, Kliegel M, et al. Effect of early-and adult-life socioeconomic circumstances on physical inactivity. Med Sci Sports Exerc. 2018;50:476–85. PubMed
King AC, King DK. Physical activity for an aging population. Public Health Rev. 2010;32:401–26.
Sutin AR, Terracciano A, Milaneschi Y, An Y, Ferrucci L, Zonderman AB. The trajectory of depressive symptoms across the adult life span. JAMA Psychiat. 2013;70:803–811. PubMed PMC
WHO. Mental health of older adults. https://www.who.int/news-room/fact-sheets/detail/mental-health-of-older-adults. WHO; 2017.
Chekroud SR, Gueorguieva R, Zheutlin AB, Paulus M, Krumholz HM, Krystal JH, et al. Association between physical exercise and mental health in 1· 2 million individuals in the USA between 2011 and 2015: a cross-sectional study. Lancet Psychiatr. 2018;5:739–46. PubMed
Schuch FB, Vancampfort D, Firth J, Rosenbaum S, Ward PB, Silva ES, et al. Physical activity and incident depression: a meta-analysis of prospective cohort studies. Am J Psychiatry. 2018;175:631–48. PubMed
Boisgontier MP, Orsholits D, von Arx M, Sieber S, Miller MW, Courvoisier D, et al. Adverse childhood experiences, depressive symptoms, functional dependence, and physical activity: a moderated mediation model. J Phys Act Health. 2020;17:790–99. PubMed
De Sousa RAL, Rocha-Dias I, de Oliveira LRS, Improta-Caria AC, Monteiro-Junior RS, Cassilhas RC. Molecular mechanisms of physical exercise on depression in the elderly: a systematic review. Mol Biol Rep. 2021;48:3853–62. PubMed
Harvey SB, Hotopf M, Øverland S, Mykletun A. Physical activity and common mental disorders. Br J Psychiatry. 2010;197:357–64. PubMed
Choi KW, Chen C-Y, Stein MB, Klimentidis YC, Wang M-J, Koenen KC, et al. Assessment of bidirectional relationships between physical activity and depression among adults: a 2-sample mendelian randomization study. JAMA Psychiat. 2019;76:399–408. PubMed PMC
Aichele S, Ghisletta P, Corley J, Pattie A, Taylor AM, Starr JM, et al. Fluid intelligence predicts change in depressive symptoms in later life: the Lothian Birth Cohort 1936. Psychol Sci. 2018;29:1984–95. PubMed PMC
Aichele S, Ghisletta P, Neupert S. Memory deficits precede increases in depressive symptoms in later adulthood. J Gerontol B Psychol Sci Soc Sci. 2018;74:943–53. PubMed PMC
Perrino T, Mason CA, Brown SC, Spokane A, Szapocznik J. Longitudinal relationships between cognitive functioning and depressive symptoms among Hispanic older adults. J Gerontol B Psychol Sci Soc Sci. 2008;63:P309–17. PubMed PMC
Jajodia A, Borders A. Memory predicts changes in depressive symptoms in older adults: a bidirectional longitudinal analysis. J Gerontol Ser B: Psychological Sci Soc Sci. 2011;66:571–81. PubMed PMC
Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, et al. Physical activity and risk of cognitive decline: a meta‐analysis of prospective studies. J Intern Med. 2011;269:107–17. PubMed
Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510. PubMed PMC
Hamer M, Terrera GM, Demakakos P. Physical activity and trajectories in cognitive function: English Longitudinal Study of Ageing. J Epidemiol Community Health. 2018;72:477–83. PubMed PMC
Cheval B, Boisgontier M, Sieber S, Ihle A, Orsholits D, Forestier C, et al. Cognitive functions and physical activity in aging when energy is lacking. Eur J Ageing. 2022;19:533–44. PubMed PMC
Cheval B, Orsholits D, Sieber S, Courvoisier DC, Cullati S, Boisgontier MP. Relationship between decline in cognitive resources and physical activity. Health Psychol. 2020;39:519–28. PubMed
Sabia S, Dugravot A, Dartigues J-F, Abell J, Elbaz A, Kivimäki M, et al. Physical activity, cognitive decline, and risk of dementia: 28 year follow-up of Whitehall II cohort study. Brit Med J. 2017;357:j2709. PubMed PMC
Cheval B, Csajbók Z, Formanek T, Sieber S, Boisgontier MP, Cullati S, et al. Association between physical-activity trajectories and cognitive decline in adults 50 years of age or older. Epidemiol Psychiatr Sci. 2021;30:e79. PubMed PMC
Roig M, Nordbrandt S, Geertsen SS, Nielsen JB. The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neurosci Biobehav Rev. 2013;37:1645–66. PubMed
Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9:58–65. PubMed
Raichlen DA, Alexander GE. Adaptive capacity: an evolutionary neuroscience model linking exercise, cognition, and brain health. Trends Neurosci. 2017;40:408–21. PubMed PMC
Cheval B, Cabral DAR, Daou M, Bacelar M, Parma JO, Forestier C, et al. Inhibitory control elicited by physical activity and inactivity stimuli: an EEG study. Motiv Sci. 2021;7:386–89. doi: 10.1037/mot0000236. DOI
Cheval B, Sarrazin P, Boisgontier MP, Radel R. Temptations toward behaviors minimizing energetic costs (BMEC) automatically activate physical activity goals in successful exercisers. Psychol Sport Exerc. 2017;30:110–17.
Cheval B, Tipura E, Burra N, Frossard J, Chanal J, Orsholits D, et al. Avoiding sedentary behaviors requires more cortical resources than avoiding physical activity: an EEG study. Neuropsychologia. 2018;119:68–80. doi: 10.1016/j.neuropsychologia.2018.07.029. PubMed DOI
Prévost C, Pessiglione M, Météreau E, Cléry-Melin M-L, Dreher J-C. Separate valuation subsystems for delay and effort decision costs. J Neurosci. 2010;30:14080–090. doi: 10.1523/JNEUROSCI.2752-10.2010. PubMed DOI PMC
Skvortsova V, Palminteri S, Pessiglione M. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates. J Neurosci. 2014;34:15621–630. PubMed PMC
Hagura N, Haggard P, Diedrichsen J. Perceptual decisions are biased by the cost to act. Elife. 2017;6:e18422. doi: 10.7554/eLife.18422. PubMed DOI PMC
Sivaramakrishnan H, Gucciardi D, McDonald M, Quested E, Cheval B & Ntoumanis N. Psychosocial outcomes of sport participation for middle-aged and older adults: a systematic review and meta-analysis. Int Rev. Sport Exerc Psychol. 2021;1:22.
Tucker-Drob EM. Global and domain-specific changes in cognition throughout adulthood. Developmental Psychol. 2011;47:331. PubMed PMC
Carpenter BD, Xiong C, Porensky EK, Lee MM, Brown PJ, Coats M, et al. Reaction to a dementia diagnosis in individuals with Alzheimer’s disease and mild cognitive impairment. J Am Geriatr Soc. 2008;56:405–12. PubMed
Butters MA, Young JB, Lopez O, Aizenstein HJ, Mulsant BH, Reynolds CF, III, et al. Pathways linking late-life depression to persistent cognitive impairment and dementia. Dialogues Clin Neurosci. 2008;10:345–57. PubMed PMC
Cheval B, Boisgontier MP. The theory of effort minimization in physical activity. Exerc Sport Sci Rev. 2021;49:168–78. doi: 10.1249/JES.0000000000000252. PubMed DOI PMC
Cheval B, Radel R, Neva JL, Boyd LA, Swinnen SP, Sander D, et al. Behavioral and neural evidence of the rewarding value of exercise behaviors: a systematic review. Sports Med. 2018;48:1389–1404. doi: 10.1007/s40279-018-0898-0. PubMed DOI
Lieberman DE. Is exercise really medicine? An evolutionary perspective. Curr Sports Med Rep. 2015;14:313–9. PubMed
Cheval B, Daou M, Cabral DAR, Bacelar M, Parma JO, Forestier C, et al. Higher inhibitory control is required to escape the innate attraction to effort minimization. Psychol Sport Exerc. 2020;51:101781.
Cheval B, Sarrazin P, Pelletier L. Impulsive approach tendencies towards physical activity and sedentary behaviors, but not reflective intentions, prospectively predict non-exercise activity thermogenesis. PLoS ONE. 2014;9:e115238. doi: 10.1371/journal.pone.0115238. PubMed DOI PMC
Orth U, Clark DA, Donnellan MB, Robins RW. Testing prospective effects in longitudinal research: Comparing seven competing cross-lagged models. J Pers Soc Psychol. 2021;120:1013. PubMed PMC
Hamaker EL, Kuiper RM, Grasman RP. A critique of the cross-lagged panel model. Psychol Methods. 2015;20:102. PubMed
MacCallum RC, Browne MW, Cai L. Testing differences between nested covariance structure models: Power analysis and null hypotheses. Psychol Methods. 2006;11:19. PubMed
Cheval B, Rebar AL, Miller MM, Sieber S, Orsholits D, Baranyi G, et al. Cognitive resources moderate the adverse impact of poor neighborhood conditions on physical activity. Prev Med. 2019;126:105741. PubMed
Leist A, Terrera GM, Solomon A. Using cohort data to emulate lifestyle interventions: Long‐term beneficial effects of initiating physical activity on cognitive decline and dementia: prevention (nonpharmacological)/Lifestyle factors (eg, smoking, etc.) Alzheimers Dement. 2020;16:e044493.
Lindwall M, Larsman P, Hagger MS. The reciprocal relationship between physical activity and depression in older European adults: a prospective cross-lagged panel design using SHARE data. Health Psychol. 2011;30:453. PubMed
de Souto Barreto P, Cesari M, Andrieu S, Vellas B, Rolland Y. Physical activity and incident chronic diseases: a longitudinal observational study in 16 European countries. Am J Prev Med. 2017;52:373–8. PubMed
Dyrstad SM, Hansen BH, Holme IM, Anderssen SA. Comparison of self-reported versus accelerometer-measured physical activity. Med Sci Sports Exerc. 2014;46:99–106. PubMed
Cheval B, Darrous L, Choi K, Klimentidis Y, Raichlen D, Alexander G, et al. Accelerometer-measured physical activity and cognitive functioning: A Mendelian Randomization study. Preprint at bioRxiv 10.1101/2020.10.16.342675 (2020).
Fawns-Ritchie C, Deary IJ. Reliability and validity of the UK Biobank cognitive tests. PLoS ONE. 2020;15:e0231627. PubMed PMC
Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun. 2018;9:1–16. PubMed PMC
Zhao Q, Lv Y, Zhou Y, Hong Z, Guo Q. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS ONE. 2012;7:e51157. PubMed PMC
Lezak MD, Howieson DB, Loring DW, Fischer JS. Neuropsychological assessment. USA:Oxford University Press;2004.
Börsch-Supan A, Brandt M, Hunkler C, Kneip T, Korbmacher J, Malter F, et al. Data resource profile: the Survey of Health, Ageing and Retirement in Europe (SHARE) Int J Epidemiol. 2013;42:992–1001. PubMed PMC
Castro‐Costa E, Dewey M, Stewart R, Banerjee S, Huppert F, Mendonca‐Lima C, et al. Ascertaining late‐life depressive symptoms in Europe: An evaluation of the survey version of the EURO‐D scale in 10 nations. The SHARE project. Int J Methods Psychiatr Res. 2008;17:12–29. PubMed PMC
Prince MJ, Reischies F, Beekman AT, Fuhrer R, Jonker C, Kivela S-L, et al. Development of the EURO–D scale–a European Union initiative to compare symptoms of depression in 14 European centres. Br J Psychiatry. 1999;174:330–8. PubMed
Kim KH. The relation among fit indexes, power, and sample size in structural equation modeling. Struct Equ Modeling. 2005;12:368–90.
Chalabaev A, Boisgontier M, Sieber S, Sander D, Cullati S, Maltagliati S, et al. Early-life socioeconomic circumstances and physical activity in older age: women pay the price. Psychol Sci. 2022;33:212–23. PubMed PMC
Maltagliati S, Sieber S, Sarrazin P, Cullati S, Chalabaev A, Millet GP, et al. Muscle strength explains the protective effect of physical activity against COVID-19 hospitalization among adults aged 50 years and older. J Sports Sci. 2021;39:2796–803. PubMed
Sano M, Raman R, Emond J, Thomas RG, Petersen R, Schneider LS, et al. Adding delayed recall to the Alzheimer Disease Assessment Scale is useful in studies of mild cognitive impairment but not Alzheimer disease. Alzheimer Dis Assoc Disord. 2011;25:122–7. PubMed PMC
Harris S, Dowson J. Recall of a 10-word list in the assessment of dementia in the elderly. Br J Psychiatry. 1982;141:524–27. PubMed
Cheval B, Maltagliati S, Sieber S, Cullati S, Zou L, Ihle A, et al. Better subjective sleep quality partly explains the association between self-reported physical activity and better cognitive function. J Alzheimers Dis. 2022;87:919–31. PubMed
Cheval B, Orsholits D, Sieber S, Stringhini S, Courvoisier D, Kliegel M, et al. Early-life socioeconomic circumstances explain health differences in old age, but not their evolution over time. J Epidemiol Community Health. 2019;73:703–11. PubMed
Baranyi G, Sieber S, Pearce J, Cheval B, Dibben C, Kliegel M, et al. A longitudinal study of neighbourhood conditions and depression in ageing European adults: do the associations vary by exposure to childhood stressors? Prev Med. 2019;126:105764. PubMed
Marques A, Henriques-Neto D, Peralta M, Marconcin P, Gouveia ÉR, Ferrari G, et al. Exploring grip strength as a predictor of depression in middle-aged and older adults. Sci Rep. 2021;11:1–8. PubMed PMC
Formánek T, Csajbók Z, Wolfová K, Kučera M, Tom S, Aarsland D, et al. Trajectories of depressive symptoms and associated patterns of cognitive decline. Sci Rep. 2020;10:1–11. PubMed PMC
Cole DA, Maxwell SE. Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. J Abnorm Psychol. 2003;112:558–77. PubMed
Maydeu-Olivares A. Maximum likelihood estimation of structural equation models for continuous data: Standard errors and goodness of fit. Struct Equ Modeling. 2017;24:383–94.
Brown TA. Confirmatory factor analysis for applied research. New York, NY: Guilford publications; 2015.
Rossor MN, Fox NC, Mummery CJ, Schott JM, Warren JD. The diagnosis of young-onset dementia. Lancet Neurol. 2010;9:793–806. PubMed PMC
Rosen WG. Verbal fluency in aging and dementia. J Clin Exp Neuropsychol. 1980;2:135–46.
Ou L, Chow S-M, Ji L, Molenaar PC. (Re) evaluating the implications of the autoregressive latent trajectory model through likelihood ratio tests of its initial conditions. Multivar Behav Res. 2017;52:178–99. PubMed PMC
Lüdtke O, Robitzsch A. A critique of the random intercept cross-lagged panel model. 2021 https://psyarxiv.com/6f85c/.
Wu W, Carroll IA, Chen P-Y. A single-level random-effects cross-lagged panel model for longitudinal mediation analysis. Behav Res Methods. 2018;50:2111–24. PubMed
MacKinnon DP, Valente MJ, Gonzalez O. The correspondence between causal and traditional mediation analysis: the link is the mediator by treatment interaction. Prev Sci. 2020;21:147–157. PubMed PMC