A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum

. 2022 ; 13 () : 927200. [epub] 20220912

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36172550

Dinoflagellate inhabitants of the reef-building corals exchange nutrients and signals with host cells, which often benefit the growth of both partners. Phytohormones serve as central hubs for signal integration between symbiotic microbes and their hosts, allowing appropriate modulation of plant growth and defense in response to various stresses. However, the presence and function of phytohormones in photosynthetic dinoflagellates and their function in the holobionts remain elusive. We hypothesized that endosymbiotic dinoflagellates may produce and employ phytohormones for stress responses. Using the endosymbiont of reef corals Breviolum minutum as model, this study aims to exam whether the alga employ analogous signaling systems by an integrated multiomics approach. We show that key gibberellin (GA) biosynthetic genes are widely present in the genomes of the selected dinoflagellate algae. The non-13-hydroxylation pathway is the predominant route for GA biosynthesis and the multifunctional GA dioxygenase in B. minutum has distinct substrate preference from high plants. GA biosynthesis is modulated by the investigated bleaching-stimulating stresses at both transcriptional and metabolic levels and the exogenously applied GAs improve the thermal tolerance of the dinoflagellate. Our results demonstrate the innate ability of a selected Symbiodiniaceae to produce the important phytohormone and the active involvement of GAs in the coordination and the integration of the stress response.

Zobrazit více v PubMed

Aranda M., Li Y., Liew Y. J., Baumgarten S., Simakov O., Wilson M. C. (2016). Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6:39734. 10.1038/srep39734 PubMed DOI PMC

Claeys H., De Bodt S., Inzé D. (2014). Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci. 19 231–239. 10.1016/j.tplants.2013.10.001 PubMed DOI

Davy S. K., Allemand D., Weis V. M. (2012). Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76 229–261. 10.1128/MMBR.05014-11 PubMed DOI PMC

Gan Q., Zhou W., Wang S., Li X., Xie Z., Wang J., et al. (2017). A customized contamination controlling approach for culturing oleaginous Nannochloropsis oceanica. Algal Res. 27 376–382.

González-Garcinuño Á, Sánchez-Álvarez J. M., Galán M. A., Martin Del Valle E. M. (2016). Understanding and optimizing the addition of phytohormones in the culture of microalgae for lipid production. Biotechnol. Prog. 32 1203–1211. 10.1002/btpr.2312 PubMed DOI

Han X., Song X., Li F., Lu Y. (2020). Improving lipid productivity by engineering a control-knob gene in the oleaginous microalga Nannochloropsis oceanica. Metab. Eng. Commun. 11:e00142. 10.1016/j.mec.2020.e00142 PubMed DOI PMC

Helliwell C. A., Poole A., Peacock W. J., Dennis E. S. (1999). Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol. 119 507–510. 10.1104/pp.119.2.507 PubMed DOI PMC

Hu Y., Zhou L., Huang M., He X., Yang Y., Liu X., et al. (2018). Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nat. Plants 4 289–298. 10.1038/s41477-018-0143-8 PubMed DOI

Israelsson M., Mellerowicz E., Chono M., Gullberg J., Moritz T. (2004). Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. effects on gibberellin homeostasis and development. Plant Physiol. 135 221–230. 10.1104/pp.104.038935 PubMed DOI PMC

Jeong H. J., Yoo Y. D., Kang N. S., Lim A. S., Seong K. A., Lee S. Y., et al. (2012). Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc.Nat. Acad. Sci.U.S.A. 109 12604–12609. 10.1073/pnas.1204302109 PubMed DOI PMC

Jiang J., Lu Y. (2019). Metabolite profiling of Breviolum minutum in response to acidification. Aquat. Toxicol. 213:105215. 10.1016/j.aquatox.2019.05.017 PubMed DOI

Jiang J., Wang A., Deng X., Zhou W., Gan Q., Lu Y. (2021). How Symbiodiniaceae meets the challenges of life during coral bleaching. Coral Reefs 40 1339–1353.

Kapoore R. V., Wood E. E., Llewellyn C. A. (2021). Algae biostimulants: a critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 49:107754. 10.1016/j.biotechadv.2021.107754 PubMed DOI

Kopp C., Domart-Coulon I., Escrig S., Humbel B. M., Hignette M., Meibom A. (2015). Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio 6:e02299. 10.1128/mBio.02299-14 PubMed DOI PMC

Lajeunesse T. C., Parkinson J. E., Gabrielson P. W., Jeong H. J., Reimer J. D., Voolstra C. R., et al. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28 2570–2580.e6. 10.1016/j.cub.2018.07.008 PubMed DOI

Lange T., Hedden P., Graebe J. E. (1994). Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc. Natl. Acad. Sci.U.S.A. 91 8552–8556. 10.1073/pnas.91.18.8552 PubMed DOI PMC

Lin S., Cheng S., Song B., Zhong X., Lin X., Li W., et al. (2015). The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350 691–694. 10.1126/science.aad0408 PubMed DOI

Liu H., Stephens T. G., González-Pech R. A., Beltran V. H., Lapeyre B., Bongaerts P. (2018). Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun. Biol. 1:95. PubMed PMC

Lu Y., Zhang X., Gu X., Lin H., Melis A. (2021b). Engineering microalgae: transition from empirical design to programmable cells. Crit. Rev. Biotechnol. 41 1233–1256. 10.1080/07388551.2021.1917507 PubMed DOI

Lu Y., Gan Q., Iwai M., Alboresi A., Burlacot A., Dautermann O., et al. (2021a). Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection. Nat. Commun. 12:679. 10.1038/s41467-021-20967-1 PubMed DOI PMC

Lu Y., Jiang J., Zhao H., Han X., Xiang Y., Zhou W. (2020). Clade-specific sterol metabolites in dinoflagellate endosymbionts are associated with coral bleaching in response to environmental cues. mSystems 5:e00765. 10.1128/mSystems.00765-00720 PubMed DOI PMC

Lu Y., Jiang P., Liu S., Gan Q., Cui H., Qin S. (2010). Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour. Technol. 101 6468–6474. 10.1016/j.biortech.2010.03.072 PubMed DOI

Lu Y., Tarkowská D., Turečková V., Luo T., Xin Y., Li J., et al. (2014). Antagonistic roles of abscisic acid and cytokinin in oleaginous microalga Nannochloropsis oceanica upon nitrogen-depletion expand the evolutionary breadth of phytohormone function. Plant J. 80 52–68. 10.1111/tpj.12615 PubMed DOI

Park W.-K., Yoo G., Moon M., Kim C. W., Choi Y.-E., Yang J.-W. (2013). Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl. Biochem. Biotechnol. 171 1128–1142. 10.1007/s12010-013-0386-9 PubMed DOI

Peleg Z., Blumwald E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 14 290–295. 10.1016/j.pbi.2011.02.001 PubMed DOI

Piotrowska-Niczyporuk A., Bajguz A., Zambrzycka E., Godlewska-Żyłkiewicz B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem. 52 52–65. 10.1016/j.plaphy.2011.11.009 PubMed DOI

Piotrowskaniczyporuk A., Bajguz A., Zambrzycka E., Godlewska-Żylkiewicz B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem. 52 52–65. PubMed

Rensing S. A., Lang D., Zimmer A. D., Terry A., Salamov A., Shapiro H., et al. (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319 64–69. 10.1126/science.1150646 PubMed DOI

Roth M. S. (2014). The engine of the reef: photobiology of the coral-algal symbiosis. Front. Microbiol. 5 422–422. 10.3389/fmicb.2014.00422 PubMed DOI PMC

Shoguchi E., Shinzato C., Kawashima T., Gyoja F., Mungpakdee S., Koyanagi R. (2013). Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23 1399–1408. 10.1016/j.cub.2013.05.062 PubMed DOI

Sponsel V. M., Hedden P. (2010). “Gibberellin biosynthesis and inactivation,” in Plant Hormones, ed. Davies P. J. (Dordrecht: Springer; ), 63–94.

Stirk W. A., Bálint P., Tarkowská D., Novák O., Maróti G., Ljung K. (2014). Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiol. Biochem. 79 66–76. 10.1016/j.plaphy.2014.03.005 PubMed DOI

Sun T. P., Kamiya Y. (1994). The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6 1509–1518. 10.1105/tpc.6.10.1509 PubMed DOI PMC

Tudzynski B., Kawaide H., Kamiya Y. (1998). Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Curr. Genet. 34 234–240. 10.1007/s002940050392 PubMed DOI

Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. (2013). Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta 112 85–94. 10.1016/j.talanta.2013.03.068 PubMed DOI

Yamaguchi S., Sun T., Kawaide H., Kamiya Y. (1998). The GA2 locus of Arabidopsis thaliana encodes ent-Kaurene synthase of gibberellin biosynthesis. Plant Physiol. 116 1271–1278. 10.1104/pp.116.4.1271 PubMed DOI PMC

Yasumura Y., Crumpton-Taylor M., Fuentes S., Harberd N. P. (2007). Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr. Biol. 17 1225–1230. 10.1016/j.cub.2007.06.037 PubMed DOI

Yu X. J., Sun J., Sun Y.-Q., Zheng J.-Y., Wang Z. (2016). Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem. Eng. J. 112 258–268.

Zanewich K. P., Rood S. B. (1995). Vernalization and gibberellin physiology of winter canola (endogenous gibberellin (GA) content and metabolism of [3H]GA1 and [3H]GA20. Plant Physiol. 108 615–621. 10.1104/pp.108.2.615 PubMed DOI PMC

Zhou W., Zhang X., Wang A., Gan Q., Yang L., Yi L., et al. (2022). A widespread sterol methyl transferase participates in the biosynthesis of both C4α and C4β-methyl sterols. J. Am. Chem. Soc. 144 9023–9032 10.1021/jacs.2c01401 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...