Targeting of the Mitochondrial TET1 Protein by Pyrrolo[3,2-b]pyrrole Chelators

. 2022 Sep 16 ; 23 (18) : . [epub] 20220916

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36142763

Grantová podpora
SVV260521, UNCE 204064, Progress Q26-38/LF1 and Q27/LF1 Charles University
LM2018133 (EATRIS-CZ) Ministry of Education Youth and Sports
No. TN01000013 and FW02020128. Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000785 Operational Programme Research, Development and Education
FV40120 Ministry of Industry and Trade
NU21-08-00407 Ministry of Health

Targeting of epigenetic mechanisms, such as the hydroxymethylation of DNA, has been intensively studied, with respect to the treatment of many serious pathologies, including oncological disorders. Recent studies demonstrated that promising therapeutic strategies could potentially be based on the inhibition of the TET1 protein (ten-eleven translocation methylcytosine dioxygenase 1) by specific iron chelators. Therefore, in the present work, we prepared a series of pyrrolopyrrole derivatives with hydrazide (1) or hydrazone (2-6) iron-binding groups. As a result, we determined that the basic pyrrolo[3,2-b]pyrrole derivative 1 was a strong inhibitor of the TET1 protein (IC50 = 1.33 μM), supported by microscale thermophoresis and molecular docking. Pyrrolo[3,2-b]pyrroles 2-6, bearing substituted 2-hydroxybenzylidene moieties, displayed no significant inhibitory activity. In addition, in vitro studies demonstrated that derivative 1 exhibits potent anticancer activity and an exclusive mitochondrial localization, confirmed by Pearson's correlation coefficient of 0.92.

Zobrazit více v PubMed

Weinhold B. Epigenetics: The science of change. Environ. Health Perspect. 2006;114:A160–A167. doi: 10.1289/ehp.114-a160. PubMed DOI PMC

Mehler M.F. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog. Neurobiol. 2008;86:305–341. doi: 10.1016/j.pneurobio.2008.10.001. PubMed DOI PMC

Dawson M.A., Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI

Dean W., Santos F., Stojkovic M., Zakhartchenko V., Walter J., Wolf E., Reik W. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA. 2001;98:13734–13738. doi: 10.1073/pnas.241522698. PubMed DOI PMC

Day J.J., Kennedy A.J., Sweatt J.D. DNA methylation and its implications and accessibility for neuropsychiatric therapeutics. Annu. Rev. Pharmacol. Toxicol. 2015;55:591–611. doi: 10.1146/annurev-pharmtox-010814-124527. PubMed DOI PMC

Baylin S.B., Jones P.A. A decade of exploring the cancer epigenome-biological and translational implications. Nat. Rev. Cancer. 2011;11:726–734. doi: 10.1038/nrc3130. PubMed DOI PMC

Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935. doi: 10.1126/science.1170116. PubMed DOI PMC

Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–930. doi: 10.1126/science.1169786. PubMed DOI PMC

He Y.-F., Li B.-Z., Li Z., Liu P., Wang Y., Tang Q., Ding J., Jia Y., Chen Z., Li L., et al. Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science. 2011;333:1303–1307. doi: 10.1126/science.1210944. PubMed DOI PMC

Guo J.U., Su Y., Zhong C., Ming G.L., Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145:423–434. doi: 10.1016/j.cell.2011.03.022. PubMed DOI PMC

Williams K., Christensen J., Pedersen M.T., Johansen J.V., Cloos P.A.C., Rappsilber J., Helin K. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011;473:343–348. doi: 10.1038/nature10066. PubMed DOI PMC

Jin C., Lu Y., Jelinek J., Liang S., Estecio M.R., Barton M.C., Issa J.P. TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Res. 2014;42:6956–6971. doi: 10.1093/nar/gku372. PubMed DOI PMC

Wu H., D’Alessio A.C., Ito S., Xia K., Wang Z., Cui K., Zhao K., Sun Y.E., Zhang Y. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature. 2011;473:389–393. doi: 10.1038/nature09934. PubMed DOI PMC

Iyer L.M., Tahiliani M., Rao A., Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle. 2009;8:1698–1710. doi: 10.4161/cc.8.11.8580. PubMed DOI PMC

Han J.A., An J., Ko M. Functions of TET Proteins in Hematopoietic Transformation. Mol. Cells. 2015;38:925–935. doi: 10.14348/molcells.2015.0294. PubMed DOI PMC

Liu W., Wu G., Xiong F., Chen Y. Advances in the DNA methylation hydroxylase TET1. Biomark. Res. 2021;9:76. doi: 10.1186/s40364-021-00331-7. PubMed DOI PMC

Bray J.K., Dawlaty M.M., Verma A., Maitra A. Roles and Regulations of TET Enzymes in Solid Tumors. Trends Cancer. 2021;7:635–646. doi: 10.1016/j.trecan.2020.12.011. PubMed DOI

Huang H., Jiang X., Li Z., Li Y., Song C.X., He C., Sun M., Chen P., Gurbuxani S., Wang J., et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc. Natl. Acad. Sci. USA. 2013;110:11994–11999. doi: 10.1073/pnas.1310656110. PubMed DOI PMC

Good C.R., Panjarian S., Kelly A.D., Madzo J., Patel B., Jelinek J., Issa J.J. TET1-Mediated Hypomethylation Activates Oncogenic Signaling in Triple-Negative Breast Cancer. Cancer Res. 2018;78:4126–4137. doi: 10.1158/0008-5472.CAN-17-2082. PubMed DOI PMC

Zhang W., Barger C.J., Link P.A., Mhawech-Fauceglia P., Miller A., Akers S.N., Odunsi K., Karpf A.R. DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics. 2015;10:736–748. doi: 10.1080/15592294.2015.1062206. PubMed DOI PMC

Chen L.Y., Huang R.L., Chan M.W., Yan P.S., Huang T.S., Wu R.C., Suryo Rahmanto Y., Su P.H., Weng Y.C., Chou J.L., et al. TET1 reprograms the epithelial ovarian cancer epigenome and reveals casein kinase 2α as a therapeutic target. J. Pathol. 2019;248:363–376. doi: 10.1002/path.5266. PubMed DOI PMC

Takai H., Masuda K., Sato T., Sakaguchi Y., Suzuki T., Suzuki T., Koyama-Nasu R., Nasu-Nishimura Y., Katou Y., Ogawa H., et al. 5-Hydroxymethylcytosine plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex. Cell Rep. 2014;9:48–60. doi: 10.1016/j.celrep.2014.08.071. PubMed DOI

Filipczak P.T., Leng S., Tellez C.S., Do K.C., Grimes M.J., Thomas C.L., Walton-Filipczak S.R., Picchi M.A., Belinsky S.A. p53-Suppressed Oncogene TET1 Prevents Cellular Aging in Lung Cancer. Cancer Res. 2019;79:1758–1768. doi: 10.1158/0008-5472.CAN-18-1234. PubMed DOI PMC

Zhao X., Cui D., Yan F., Yang L., Huang B. Circ_0007919 exerts an anti-tumor role in colorectal cancer through targeting miR-942-5p/TET1 axis. Pathol. Res. Pract. 2022;229:153704. doi: 10.1016/j.prp.2021.153704. PubMed DOI

Chen K., Lu P., Beeraka N.M., Sukocheva O.A., Madhunapantula S.V., Liu J., Sinelnikov M.Y., Nikolenko V.N., Bulygin K.V., Mikhaleva L.M., et al. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin. Cancer Biol. 2022;83:556–569. doi: 10.1016/j.semcancer.2020.09.012. PubMed DOI

Ghosh S., Ranawat A.S., Tolani P., Scaria V. MitoepigenomeKB a comprehensive resource for human mitochondrial epigenetic data. Mitochondrion. 2018;42:54–58. doi: 10.1016/j.mito.2017.11.001. PubMed DOI

Chen H., Dzitoyeva S., Manev H. Effect of valproic acid on mitochondrial epigenetics. Eur. J. Pharmacol. 2012;690:51–59. doi: 10.1016/j.ejphar.2012.06.019. PubMed DOI PMC

Dzitoyeva S., Chen H., Manev H. Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol. Aging. 2012;33:2881–2891. doi: 10.1016/j.neurobiolaging.2012.02.006. PubMed DOI PMC

Bellizzi D., D’Aquila P., Scafone T., Giordano M., Riso V., Riccio A., Passarino G. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res. 2013;20:537–547. doi: 10.1093/dnares/dst029. PubMed DOI PMC

Brodie S.A., Brandes J.C. Could valproic acid be an effective anticancer agent? The evidence so far. Expert Rev. Anticancer Ther. 2014;14:1097–1100. doi: 10.1586/14737140.2014.940329. PubMed DOI PMC

Kejík Z., Jakubek M., Kaplánek R., Králová J., Mikula I., Martásek P., Král V. Epigenetic agents in combined anticancer therapy. Future Med. Chem. 2018;10:1113–1130. doi: 10.4155/fmc-2017-0203. PubMed DOI

Antonyová V., Kejík Z., Brogyanyi T., Kaplánek R., Veselá K., Abramenko N., Ocelka T., Masařík M., Matkowski A., Gburek J., et al. Non-psychotropic cannabinoids as inhibitors of TET1 protein. Bioorg. Chem. 2022;124:105793. doi: 10.1016/j.bioorg.2022.105793. PubMed DOI

Jakubek M., Kejík Z., Kaplánek R., Antonyová V., Hromádka R., Šandriková V., Sýkora D., Martásek P., Král V. Hydrazones as novel epigenetic modulators: Correlation between TET 1 protein inhibition activity and their iron(II) binding ability. Bioorg. Chem. 2019;88:102809. doi: 10.1016/j.bioorg.2019.02.034. PubMed DOI

Friese D.H., Mikhaylov A., Krzeszewski M., Poronik Y.M., Rebane A., Ruud K., Gryko D.T. Pyrrolo[3,2-b]pyrroles—From Unprecedented Solvatofluorochromism to Two-Photon Absorption. Chem. A Eur. J. 2015;21:18364–18374. doi: 10.1002/chem.201502762. PubMed DOI PMC

Popiołek Ł. Hydrazide–hydrazones as potential antimicrobial agents: Overview of the literature since 2010. Med. Chem. Res. 2017;26:287–301. doi: 10.1007/s00044-016-1756-y. PubMed DOI PMC

Kaplánek R., Jakubek M., Rak J., Kejík Z., Havlík M., Dolenský B., Frydrych I., Hajdúch M., Kolář M., Bogdanová K., et al. Caffeine–hydrazones as anticancer agents with pronounced selectivity toward T-lymphoblastic leukaemia cells. Bioorg. Chem. 2015;60:19–29. doi: 10.1016/j.bioorg.2015.03.003. PubMed DOI

Popiołek Ł. Updated Information on Antimicrobial Activity of Hydrazide-Hydrazones. Int. J. Mol. Sci. 2021;22:9389. doi: 10.3390/ijms22179389. PubMed DOI PMC

Kaplánek R., Havlík M., Dolenský B., Rak J., Džubák P., Konečný P., Hajdúch M., Králová J., Král V. Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger’s base skeleton. Bioorg. Med. Chem. 2015;23:1651–1659. doi: 10.1016/j.bmc.2015.01.029. PubMed DOI

Çıkla-Süzgün P., Küçükgüzel Ş.G. Recent Advances in Apoptosis: THE Role of Hydrazones. Mini Rev. Med. Chem. 2019;19:1427–1442. doi: 10.2174/1389557519666190410125910. PubMed DOI

Kumar P., Narasimhan B. Hydrazides/Hydrazones as Antimicrobial and Anticancer Agents in the New Millennium. Mini Rev. Med. Chem. 2013;13:971–987. doi: 10.2174/1389557511313070003. PubMed DOI

Zhu X., Duan Y., Li P., Fan H., Han T., Huang X. A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron(III), iron(II), and copper(II) ions. Anal. Methods. 2019;11:642–647. doi: 10.1039/C8AY02526F. DOI

Hawes C.S., Máille G.M.Ó., Byrne K., Schmitt W., Gunnlaugsson T. Tetraarylpyrrolo[3,2-b]pyrroles as versatile and responsive fluorescent linkers in metal–organic frameworks. Dalton Trans. 2018;47:10080–10092. doi: 10.1039/C8DT01784K. PubMed DOI

Badal S., Her Y.F., Maher L.J. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J. Biol. Chem. 2015;290:22287–22297. doi: 10.1074/jbc.M115.671222. PubMed DOI PMC

Seydel J.K., Schaper K.J., Wempe E., Cordes H.P. Mode of action and quantitative structure-activity correlations of tuberculostatic drugs of the isonicotinic acid hydrazide type. J. Med. Chem. 1976;19:483–492. doi: 10.1021/jm00226a007. PubMed DOI

Chua G.N.L., Wassarman K.L., Sun H., Alp J.A., Jarczyk E.I., Kuzio N.J., Bennett M.J., Malachowsky B.G., Kruse M., Kennedy A.J. Cytosine-Based TET Enzyme Inhibitors. ACS Med. Chem. Lett. 2019;10:180–185. doi: 10.1021/acsmedchemlett.8b00474. PubMed DOI PMC

Dereka B., Rosspeintner A., Krzeszewski M., Gryko D.T., Vauthey E. Symmetry-Breaking Charge Transfer and Hydrogen Bonding: Toward Asymmetrical Photochemistry. Angew. Chem. Int. Ed. 2016;55:15624–15628. doi: 10.1002/anie.201608567. PubMed DOI

Wu H., Wang Y., Qiao X., Wang D., Yang X., Li H. Pyrrolo[3,2-b]pyrrole-Based Quinoidal Compounds For High Performance n-Channel Organic Field-Effect Transistor. Chem. Mater. 2018;30:6992–6997. doi: 10.1021/acs.chemmater.8b01791. DOI

Liu H., Ye J., Zhou Y., Fu L., Lu Q., Zhang C. New pyrrolo[3,2-b]pyrrole derivatives with multiple-acceptor substitution: Efficient fluorescent emission and near-infrared two-photon absorption. Tetrahedron Lett. 2017;58:4841–4844. doi: 10.1016/j.tetlet.2017.11.028. DOI

Gerecke C., Egea Rodrigues C., Homann T., Kleuser B. The Role of Ten-Eleven Translocation Proteins in Inflammation. Front. Immunol. 2022;13:861351. doi: 10.3389/fimmu.2022.861351. PubMed DOI PMC

Barszcz B., Kędzierski K., Jeong H.Y., Kim T.-D. Spectroscopic properties of diketopyrrolopyrrole derivatives with long alkyl chains. J. Lumin. 2017;185:219–227. doi: 10.1016/j.jlumin.2017.01.019. DOI

Socrates G. Infrared and Raman Characteristic Group Frequencies. 3rd ed. John Wiley & Sons, Inc.; Chichester, UK: 2001. p. 368.

Narayana L., Suvarapu, Somala A.R., Bobbala P., Inseong H., Ammireddy V.R. Simultaneous Spectrophotometric Determination of Chromium(VI) and Vanadium(V) by using 3,4-Dihydroxybenzaldehyde isonicotinoyl hydrazone (3,4-DHBINH) J. Chem. 2009;6:718738. doi: 10.1155/2009/718738. DOI

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Petrat F., de Groot H., Sustmann R., Rauen U. The chelatable iron pool in living cells: A methodically defined quantity. Biol. Chem. 2002;383:489–502. doi: 10.1515/BC.2002.051. PubMed DOI

Lv H., Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics. 2018;10:899–916. doi: 10.1039/C8MT00048D. PubMed DOI

Nguyen T.N., Padman B.S., Usher J., Oorschot V., Ramm G., Lazarou M. Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 2016;215:857–874. doi: 10.1083/jcb.201607039. PubMed DOI PMC

Liu H., Dai C., Fan Y., Guo B., Ren K., Sun T., Wang W. From autophagy to mitophagy: The roles of P62 in neurodegenerative diseases. J. Bioenerg. Biomembr. 2017;49:413–422. doi: 10.1007/s10863-017-9727-7. PubMed DOI

Corti O., Blomgren K., Poletti A., Beart P.M. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J. Neurochem. 2020;154:354–371. doi: 10.1111/jnc.15002. PubMed DOI

Antonyová V., Kejík Z., Brogyányi T., Kaplánek R., Pajková M., Talianová V., Hromádka R., Masařík M., Sýkora D., Mikšátková L., et al. Role of mtDNA disturbances in the pathogenesis of Alzheimer’s and Parkinson’s disease. DNA Repair. 2020;92:102871. doi: 10.1016/j.dnarep.2020.102871. PubMed DOI

Xu W., Zeng Z., Jiang J.-H., Chang Y.-T., Yuan L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew. Chem. Int. Ed. 2016;55:13658–13699. doi: 10.1002/anie.201510721. PubMed DOI

Santo-Domingo J., Demaurex N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: The renaissance of mitochondrial pH. J. Gen. Physiol. 2012;139:415–423. doi: 10.1085/jgp.201110767. PubMed DOI PMC

Geldon S., Fernández-Vizarra E., Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front. Cell Dev. Biol. 2021;9:720656. doi: 10.3389/fcell.2021.720656. PubMed DOI PMC

Manev H., Dzitoyeva S. Progress in mitochondrial epigenetics. Biomol. Concepts. 2013;4:381–389. doi: 10.1515/bmc-2013-0005. PubMed DOI

Sadakierska-Chudy A., Frankowska M., Filip M. Mitoepigenetics and drug addiction. Pharmacol. Ther. 2014;144:226–233. doi: 10.1016/j.pharmthera.2014.06.002. PubMed DOI

Pirola C.J., Scian R., Gianotti T.F., Dopazo H., Rohr C., Martino J.S., Castaño G.O., Sookoian S. Epigenetic Modifications in the Biology of Nonalcoholic Fatty Liver Disease: The Role of DNA Hydroxymethylation and TET Proteins. Medicine. 2015;94:e1480. doi: 10.1097/MD.0000000000001480. PubMed DOI PMC

Ghosh S., Sengupta S., Scaria V. Hydroxymethyl cytosine marks in the human mitochondrial genome are dynamic in nature. Mitochondrion. 2016;27:25–31. doi: 10.1016/j.mito.2016.01.003. PubMed DOI

Sun X., Vaghjiani V., Jayasekara W.S.N., Cain J.E., St. John J.C. The degree of mitochondrial DNA methylation in tumor models of glioblastoma and osteosarcoma. Clin. Epigenetics. 2018;10:157. doi: 10.1186/s13148-018-0590-0. PubMed DOI PMC

Upadhyay M., Agarwal S. Ironing the mitochondria: Relevance to its dynamics. Mitochondrion. 2020;50:82–87. doi: 10.1016/j.mito.2019.09.007. PubMed DOI

Bogenhagen D., Clayton D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974;249:7991–7995. doi: 10.1016/S0021-9258(19)42063-2. PubMed DOI

Laukka T., Mariani C.J., Ihantola T., Cao J.Z., Hokkanen J., Kaelin W.G., Godley L.A., Koivunen P. Fumarate and Succinate Regulate Expression of Hypoxia-inducible Genes via TET Enzymes. J. Biol. Chem. 2016;291:4256–4265. doi: 10.1074/jbc.M115.688762. PubMed DOI PMC

Salminen A., Haapasalo A., Kauppinen A., Kaarniranta K., Soininen H., Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer’s disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog. Neurobiol. 2015;131:1–20. doi: 10.1016/j.pneurobio.2015.05.001. PubMed DOI

Kaas G.A., Zhong C., Eason D.E., Ross D.L., Vachhani R.V., Ming G.-l., King J.R., Song H., Sweatt J.D. TET1 Controls CNS 5-Methylcytosine Hydroxylation, Active DNA Demethylation, Gene Transcription, and Memory Formation. Neuron. 2013;79:1086–1093. doi: 10.1016/j.neuron.2013.08.032. PubMed DOI PMC

Stoccoro A., Coppedè F. Mitochondrial DNA Methylation and Human Diseases. Int. J. Mol. Sci. 2021;22:4594. doi: 10.3390/ijms22094594. PubMed DOI PMC

Melamed P., Yosefzon Y., David C., Tsukerman A., Pnueli L. Tet Enzymes, Variants, and Differential Effects on Function. Front. Cell Dev. Biol. 2018;6:22. doi: 10.3389/fcell.2018.00022. PubMed DOI PMC

Nedoluzhko A., Mjelle R., Renström M., Skjærven K.H., Piferrer F., Fernandes J.M.O. The first mitochondrial 5-methylcytosine map in a non-model teleost (Oreochromis niloticus) reveals extensive strand-specific and non-CpG methylation. Genomics. 2021;113:3050–3057. doi: 10.1016/j.ygeno.2021.07.007. PubMed DOI

Liu Y., Chen C., Wang X., Sun Y., Zhang J., Chen J., Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells. 2022;11:2518. doi: 10.3390/cells11162518. PubMed DOI PMC

Sillen L.G. High-speed computers as supplement to graphical methods.III. twist matrix methods for minimizing error-square sum in problems with many unknown constants. Acta Chem. Scand. 1964;18:1085–1098. doi: 10.3891/acta.chem.scand.18-1085. DOI

Jakubek M., Kejík Z., Antonyová V., Kaplánek R., Sýkora D., Hromádka R., Vyhlídalová K., Martásek P., Král V. Benzoisothiazole-1,1-dioxide-based synthetic receptor for zinc ion recognition in aqueous medium and its interaction with nucleic acids. Supramol. Chem. 2019;31:19–27. doi: 10.1080/10610278.2018.1523409. DOI

Jakubek M., Kejík Z., Kaplánek R., Veselá H., Sýkora D., Martásek P., Král V. Perimidine-based synthetic receptors for determination of copper(II) in water solution. Supramol. Chem. 2018;30:218–226. doi: 10.1080/10610278.2017.1414216. DOI

Jakubek M., Kejík Z., Parchaňský V., Kaplánek R., Vasina L., Martásek P., Král V. Water soluble chromone Schiff base derivatives as fluorescence receptor for aluminium(III) Supramol. Chem. 2017;29:1–7. doi: 10.1080/10610278.2016.1153095. DOI

Abramenko N., Kejík Z., Kaplánek R., Tatar A., Brogyányi T., Pajková M., Sýkora D., Veselá K., Antonyová V., Dytrych P., et al. Spectroscopic study of in situ-formed metallocomplexes of proton pump inhibitors in water. Chem. Biol. Drug Des. 2021;97:305–314. doi: 10.1111/cbdd.13782. PubMed DOI

Wienken C.J., Baaske P., Rothbauer U., Braun D., Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 2010;1:100. doi: 10.1038/ncomms1093. PubMed DOI

Hu L., Li Z., Cheng J., Rao Q., Gong W., Liu M., Shi Y.G., Zhu J., Wang P., Xu Y. Crystal structure of TET2-DNA complex: Insight into TET-mediated 5mC oxidation. Cell. 2013;155:1545–1555. doi: 10.1016/j.cell.2013.11.020. PubMed DOI

Hu L., Lu J., Cheng J., Rao Q., Li Z., Hou H., Lou Z., Zhang L., Li W., Gong W., et al. Structural insight into substrate preference for TET-mediated oxidation. Nature. 2015;527:118–122. doi: 10.1038/nature15713. PubMed DOI

Liebschner D., Afonine P.V., Baker M.L., Bunkóczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J., et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019;75:861–877. doi: 10.1107/S2059798319011471. PubMed DOI PMC

Brooks B.R., Brooks C.L., 3rd, Mackerell A.D., Jr., Nilsson L., Petrella R.J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614. doi: 10.1002/jcc.21287. PubMed DOI PMC

Szabó P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K., Jr. Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI

Dvořánková B., Lacina L., Smetana K., Jr. Isolation of Normal Fibroblasts and Their Cancer-Associated Counterparts (CAFs) for Biomedical Research. Methods Mol. Biol. 2019;1879:393–406. doi: 10.1007/7651_2018_137. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...