Targeting of the Mitochondrial TET1 Protein by Pyrrolo[3,2-b]pyrrole Chelators
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV260521, UNCE 204064, Progress Q26-38/LF1 and Q27/LF1
Charles University
LM2018133 (EATRIS-CZ)
Ministry of Education Youth and Sports
No. TN01000013 and FW02020128.
Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000785
Operational Programme Research, Development and Education
FV40120
Ministry of Industry and Trade
NU21-08-00407
Ministry of Health
PubMed
36142763
PubMed Central
PMC9505425
DOI
10.3390/ijms231810850
PII: ijms231810850
Knihovny.cz E-zdroje
- Klíčová slova
- TET1 protein inhibitor, hydrazone, mitochondria, pyrrolo[3,2-b]pyrrole,
- MeSH
- chelátory železa MeSH
- dioxygenasy * metabolismus MeSH
- DNA MeSH
- hydrazony chemie MeSH
- mitochondriální proteiny MeSH
- pyrroly * chemie farmakologie MeSH
- simulace molekulového dockingu MeSH
- železo MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chelátory železa MeSH
- dioxygenasy * MeSH
- DNA MeSH
- hydrazony MeSH
- mitochondriální proteiny MeSH
- pyrroly * MeSH
- železo MeSH
Targeting of epigenetic mechanisms, such as the hydroxymethylation of DNA, has been intensively studied, with respect to the treatment of many serious pathologies, including oncological disorders. Recent studies demonstrated that promising therapeutic strategies could potentially be based on the inhibition of the TET1 protein (ten-eleven translocation methylcytosine dioxygenase 1) by specific iron chelators. Therefore, in the present work, we prepared a series of pyrrolopyrrole derivatives with hydrazide (1) or hydrazone (2-6) iron-binding groups. As a result, we determined that the basic pyrrolo[3,2-b]pyrrole derivative 1 was a strong inhibitor of the TET1 protein (IC50 = 1.33 μM), supported by microscale thermophoresis and molecular docking. Pyrrolo[3,2-b]pyrroles 2-6, bearing substituted 2-hydroxybenzylidene moieties, displayed no significant inhibitory activity. In addition, in vitro studies demonstrated that derivative 1 exhibits potent anticancer activity and an exclusive mitochondrial localization, confirmed by Pearson's correlation coefficient of 0.92.
BIOCEV 1st Faculty of Medicine Charles University 252 20 Vestec Czech Republic
Duke University Medical Center Department of Biochemistry Durham NC 27707 USA
Zobrazit více v PubMed
Weinhold B. Epigenetics: The science of change. Environ. Health Perspect. 2006;114:A160–A167. doi: 10.1289/ehp.114-a160. PubMed DOI PMC
Mehler M.F. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog. Neurobiol. 2008;86:305–341. doi: 10.1016/j.pneurobio.2008.10.001. PubMed DOI PMC
Dawson M.A., Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI
Dean W., Santos F., Stojkovic M., Zakhartchenko V., Walter J., Wolf E., Reik W. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA. 2001;98:13734–13738. doi: 10.1073/pnas.241522698. PubMed DOI PMC
Day J.J., Kennedy A.J., Sweatt J.D. DNA methylation and its implications and accessibility for neuropsychiatric therapeutics. Annu. Rev. Pharmacol. Toxicol. 2015;55:591–611. doi: 10.1146/annurev-pharmtox-010814-124527. PubMed DOI PMC
Baylin S.B., Jones P.A. A decade of exploring the cancer epigenome-biological and translational implications. Nat. Rev. Cancer. 2011;11:726–734. doi: 10.1038/nrc3130. PubMed DOI PMC
Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935. doi: 10.1126/science.1170116. PubMed DOI PMC
Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–930. doi: 10.1126/science.1169786. PubMed DOI PMC
He Y.-F., Li B.-Z., Li Z., Liu P., Wang Y., Tang Q., Ding J., Jia Y., Chen Z., Li L., et al. Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science. 2011;333:1303–1307. doi: 10.1126/science.1210944. PubMed DOI PMC
Guo J.U., Su Y., Zhong C., Ming G.L., Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145:423–434. doi: 10.1016/j.cell.2011.03.022. PubMed DOI PMC
Williams K., Christensen J., Pedersen M.T., Johansen J.V., Cloos P.A.C., Rappsilber J., Helin K. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011;473:343–348. doi: 10.1038/nature10066. PubMed DOI PMC
Jin C., Lu Y., Jelinek J., Liang S., Estecio M.R., Barton M.C., Issa J.P. TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Res. 2014;42:6956–6971. doi: 10.1093/nar/gku372. PubMed DOI PMC
Wu H., D’Alessio A.C., Ito S., Xia K., Wang Z., Cui K., Zhao K., Sun Y.E., Zhang Y. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature. 2011;473:389–393. doi: 10.1038/nature09934. PubMed DOI PMC
Iyer L.M., Tahiliani M., Rao A., Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle. 2009;8:1698–1710. doi: 10.4161/cc.8.11.8580. PubMed DOI PMC
Han J.A., An J., Ko M. Functions of TET Proteins in Hematopoietic Transformation. Mol. Cells. 2015;38:925–935. doi: 10.14348/molcells.2015.0294. PubMed DOI PMC
Liu W., Wu G., Xiong F., Chen Y. Advances in the DNA methylation hydroxylase TET1. Biomark. Res. 2021;9:76. doi: 10.1186/s40364-021-00331-7. PubMed DOI PMC
Bray J.K., Dawlaty M.M., Verma A., Maitra A. Roles and Regulations of TET Enzymes in Solid Tumors. Trends Cancer. 2021;7:635–646. doi: 10.1016/j.trecan.2020.12.011. PubMed DOI
Huang H., Jiang X., Li Z., Li Y., Song C.X., He C., Sun M., Chen P., Gurbuxani S., Wang J., et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc. Natl. Acad. Sci. USA. 2013;110:11994–11999. doi: 10.1073/pnas.1310656110. PubMed DOI PMC
Good C.R., Panjarian S., Kelly A.D., Madzo J., Patel B., Jelinek J., Issa J.J. TET1-Mediated Hypomethylation Activates Oncogenic Signaling in Triple-Negative Breast Cancer. Cancer Res. 2018;78:4126–4137. doi: 10.1158/0008-5472.CAN-17-2082. PubMed DOI PMC
Zhang W., Barger C.J., Link P.A., Mhawech-Fauceglia P., Miller A., Akers S.N., Odunsi K., Karpf A.R. DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics. 2015;10:736–748. doi: 10.1080/15592294.2015.1062206. PubMed DOI PMC
Chen L.Y., Huang R.L., Chan M.W., Yan P.S., Huang T.S., Wu R.C., Suryo Rahmanto Y., Su P.H., Weng Y.C., Chou J.L., et al. TET1 reprograms the epithelial ovarian cancer epigenome and reveals casein kinase 2α as a therapeutic target. J. Pathol. 2019;248:363–376. doi: 10.1002/path.5266. PubMed DOI PMC
Takai H., Masuda K., Sato T., Sakaguchi Y., Suzuki T., Suzuki T., Koyama-Nasu R., Nasu-Nishimura Y., Katou Y., Ogawa H., et al. 5-Hydroxymethylcytosine plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex. Cell Rep. 2014;9:48–60. doi: 10.1016/j.celrep.2014.08.071. PubMed DOI
Filipczak P.T., Leng S., Tellez C.S., Do K.C., Grimes M.J., Thomas C.L., Walton-Filipczak S.R., Picchi M.A., Belinsky S.A. p53-Suppressed Oncogene TET1 Prevents Cellular Aging in Lung Cancer. Cancer Res. 2019;79:1758–1768. doi: 10.1158/0008-5472.CAN-18-1234. PubMed DOI PMC
Zhao X., Cui D., Yan F., Yang L., Huang B. Circ_0007919 exerts an anti-tumor role in colorectal cancer through targeting miR-942-5p/TET1 axis. Pathol. Res. Pract. 2022;229:153704. doi: 10.1016/j.prp.2021.153704. PubMed DOI
Chen K., Lu P., Beeraka N.M., Sukocheva O.A., Madhunapantula S.V., Liu J., Sinelnikov M.Y., Nikolenko V.N., Bulygin K.V., Mikhaleva L.M., et al. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin. Cancer Biol. 2022;83:556–569. doi: 10.1016/j.semcancer.2020.09.012. PubMed DOI
Ghosh S., Ranawat A.S., Tolani P., Scaria V. MitoepigenomeKB a comprehensive resource for human mitochondrial epigenetic data. Mitochondrion. 2018;42:54–58. doi: 10.1016/j.mito.2017.11.001. PubMed DOI
Chen H., Dzitoyeva S., Manev H. Effect of valproic acid on mitochondrial epigenetics. Eur. J. Pharmacol. 2012;690:51–59. doi: 10.1016/j.ejphar.2012.06.019. PubMed DOI PMC
Dzitoyeva S., Chen H., Manev H. Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol. Aging. 2012;33:2881–2891. doi: 10.1016/j.neurobiolaging.2012.02.006. PubMed DOI PMC
Bellizzi D., D’Aquila P., Scafone T., Giordano M., Riso V., Riccio A., Passarino G. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res. 2013;20:537–547. doi: 10.1093/dnares/dst029. PubMed DOI PMC
Brodie S.A., Brandes J.C. Could valproic acid be an effective anticancer agent? The evidence so far. Expert Rev. Anticancer Ther. 2014;14:1097–1100. doi: 10.1586/14737140.2014.940329. PubMed DOI PMC
Kejík Z., Jakubek M., Kaplánek R., Králová J., Mikula I., Martásek P., Král V. Epigenetic agents in combined anticancer therapy. Future Med. Chem. 2018;10:1113–1130. doi: 10.4155/fmc-2017-0203. PubMed DOI
Antonyová V., Kejík Z., Brogyanyi T., Kaplánek R., Veselá K., Abramenko N., Ocelka T., Masařík M., Matkowski A., Gburek J., et al. Non-psychotropic cannabinoids as inhibitors of TET1 protein. Bioorg. Chem. 2022;124:105793. doi: 10.1016/j.bioorg.2022.105793. PubMed DOI
Jakubek M., Kejík Z., Kaplánek R., Antonyová V., Hromádka R., Šandriková V., Sýkora D., Martásek P., Král V. Hydrazones as novel epigenetic modulators: Correlation between TET 1 protein inhibition activity and their iron(II) binding ability. Bioorg. Chem. 2019;88:102809. doi: 10.1016/j.bioorg.2019.02.034. PubMed DOI
Friese D.H., Mikhaylov A., Krzeszewski M., Poronik Y.M., Rebane A., Ruud K., Gryko D.T. Pyrrolo[3,2-b]pyrroles—From Unprecedented Solvatofluorochromism to Two-Photon Absorption. Chem. A Eur. J. 2015;21:18364–18374. doi: 10.1002/chem.201502762. PubMed DOI PMC
Popiołek Ł. Hydrazide–hydrazones as potential antimicrobial agents: Overview of the literature since 2010. Med. Chem. Res. 2017;26:287–301. doi: 10.1007/s00044-016-1756-y. PubMed DOI PMC
Kaplánek R., Jakubek M., Rak J., Kejík Z., Havlík M., Dolenský B., Frydrych I., Hajdúch M., Kolář M., Bogdanová K., et al. Caffeine–hydrazones as anticancer agents with pronounced selectivity toward T-lymphoblastic leukaemia cells. Bioorg. Chem. 2015;60:19–29. doi: 10.1016/j.bioorg.2015.03.003. PubMed DOI
Popiołek Ł. Updated Information on Antimicrobial Activity of Hydrazide-Hydrazones. Int. J. Mol. Sci. 2021;22:9389. doi: 10.3390/ijms22179389. PubMed DOI PMC
Kaplánek R., Havlík M., Dolenský B., Rak J., Džubák P., Konečný P., Hajdúch M., Králová J., Král V. Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger’s base skeleton. Bioorg. Med. Chem. 2015;23:1651–1659. doi: 10.1016/j.bmc.2015.01.029. PubMed DOI
Çıkla-Süzgün P., Küçükgüzel Ş.G. Recent Advances in Apoptosis: THE Role of Hydrazones. Mini Rev. Med. Chem. 2019;19:1427–1442. doi: 10.2174/1389557519666190410125910. PubMed DOI
Kumar P., Narasimhan B. Hydrazides/Hydrazones as Antimicrobial and Anticancer Agents in the New Millennium. Mini Rev. Med. Chem. 2013;13:971–987. doi: 10.2174/1389557511313070003. PubMed DOI
Zhu X., Duan Y., Li P., Fan H., Han T., Huang X. A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron(III), iron(II), and copper(II) ions. Anal. Methods. 2019;11:642–647. doi: 10.1039/C8AY02526F. DOI
Hawes C.S., Máille G.M.Ó., Byrne K., Schmitt W., Gunnlaugsson T. Tetraarylpyrrolo[3,2-b]pyrroles as versatile and responsive fluorescent linkers in metal–organic frameworks. Dalton Trans. 2018;47:10080–10092. doi: 10.1039/C8DT01784K. PubMed DOI
Badal S., Her Y.F., Maher L.J. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J. Biol. Chem. 2015;290:22287–22297. doi: 10.1074/jbc.M115.671222. PubMed DOI PMC
Seydel J.K., Schaper K.J., Wempe E., Cordes H.P. Mode of action and quantitative structure-activity correlations of tuberculostatic drugs of the isonicotinic acid hydrazide type. J. Med. Chem. 1976;19:483–492. doi: 10.1021/jm00226a007. PubMed DOI
Chua G.N.L., Wassarman K.L., Sun H., Alp J.A., Jarczyk E.I., Kuzio N.J., Bennett M.J., Malachowsky B.G., Kruse M., Kennedy A.J. Cytosine-Based TET Enzyme Inhibitors. ACS Med. Chem. Lett. 2019;10:180–185. doi: 10.1021/acsmedchemlett.8b00474. PubMed DOI PMC
Dereka B., Rosspeintner A., Krzeszewski M., Gryko D.T., Vauthey E. Symmetry-Breaking Charge Transfer and Hydrogen Bonding: Toward Asymmetrical Photochemistry. Angew. Chem. Int. Ed. 2016;55:15624–15628. doi: 10.1002/anie.201608567. PubMed DOI
Wu H., Wang Y., Qiao X., Wang D., Yang X., Li H. Pyrrolo[3,2-b]pyrrole-Based Quinoidal Compounds For High Performance n-Channel Organic Field-Effect Transistor. Chem. Mater. 2018;30:6992–6997. doi: 10.1021/acs.chemmater.8b01791. DOI
Liu H., Ye J., Zhou Y., Fu L., Lu Q., Zhang C. New pyrrolo[3,2-b]pyrrole derivatives with multiple-acceptor substitution: Efficient fluorescent emission and near-infrared two-photon absorption. Tetrahedron Lett. 2017;58:4841–4844. doi: 10.1016/j.tetlet.2017.11.028. DOI
Gerecke C., Egea Rodrigues C., Homann T., Kleuser B. The Role of Ten-Eleven Translocation Proteins in Inflammation. Front. Immunol. 2022;13:861351. doi: 10.3389/fimmu.2022.861351. PubMed DOI PMC
Barszcz B., Kędzierski K., Jeong H.Y., Kim T.-D. Spectroscopic properties of diketopyrrolopyrrole derivatives with long alkyl chains. J. Lumin. 2017;185:219–227. doi: 10.1016/j.jlumin.2017.01.019. DOI
Socrates G. Infrared and Raman Characteristic Group Frequencies. 3rd ed. John Wiley & Sons, Inc.; Chichester, UK: 2001. p. 368.
Narayana L., Suvarapu, Somala A.R., Bobbala P., Inseong H., Ammireddy V.R. Simultaneous Spectrophotometric Determination of Chromium(VI) and Vanadium(V) by using 3,4-Dihydroxybenzaldehyde isonicotinoyl hydrazone (3,4-DHBINH) J. Chem. 2009;6:718738. doi: 10.1155/2009/718738. DOI
Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Petrat F., de Groot H., Sustmann R., Rauen U. The chelatable iron pool in living cells: A methodically defined quantity. Biol. Chem. 2002;383:489–502. doi: 10.1515/BC.2002.051. PubMed DOI
Lv H., Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics. 2018;10:899–916. doi: 10.1039/C8MT00048D. PubMed DOI
Nguyen T.N., Padman B.S., Usher J., Oorschot V., Ramm G., Lazarou M. Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 2016;215:857–874. doi: 10.1083/jcb.201607039. PubMed DOI PMC
Liu H., Dai C., Fan Y., Guo B., Ren K., Sun T., Wang W. From autophagy to mitophagy: The roles of P62 in neurodegenerative diseases. J. Bioenerg. Biomembr. 2017;49:413–422. doi: 10.1007/s10863-017-9727-7. PubMed DOI
Corti O., Blomgren K., Poletti A., Beart P.M. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J. Neurochem. 2020;154:354–371. doi: 10.1111/jnc.15002. PubMed DOI
Antonyová V., Kejík Z., Brogyányi T., Kaplánek R., Pajková M., Talianová V., Hromádka R., Masařík M., Sýkora D., Mikšátková L., et al. Role of mtDNA disturbances in the pathogenesis of Alzheimer’s and Parkinson’s disease. DNA Repair. 2020;92:102871. doi: 10.1016/j.dnarep.2020.102871. PubMed DOI
Xu W., Zeng Z., Jiang J.-H., Chang Y.-T., Yuan L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew. Chem. Int. Ed. 2016;55:13658–13699. doi: 10.1002/anie.201510721. PubMed DOI
Santo-Domingo J., Demaurex N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: The renaissance of mitochondrial pH. J. Gen. Physiol. 2012;139:415–423. doi: 10.1085/jgp.201110767. PubMed DOI PMC
Geldon S., Fernández-Vizarra E., Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front. Cell Dev. Biol. 2021;9:720656. doi: 10.3389/fcell.2021.720656. PubMed DOI PMC
Manev H., Dzitoyeva S. Progress in mitochondrial epigenetics. Biomol. Concepts. 2013;4:381–389. doi: 10.1515/bmc-2013-0005. PubMed DOI
Sadakierska-Chudy A., Frankowska M., Filip M. Mitoepigenetics and drug addiction. Pharmacol. Ther. 2014;144:226–233. doi: 10.1016/j.pharmthera.2014.06.002. PubMed DOI
Pirola C.J., Scian R., Gianotti T.F., Dopazo H., Rohr C., Martino J.S., Castaño G.O., Sookoian S. Epigenetic Modifications in the Biology of Nonalcoholic Fatty Liver Disease: The Role of DNA Hydroxymethylation and TET Proteins. Medicine. 2015;94:e1480. doi: 10.1097/MD.0000000000001480. PubMed DOI PMC
Ghosh S., Sengupta S., Scaria V. Hydroxymethyl cytosine marks in the human mitochondrial genome are dynamic in nature. Mitochondrion. 2016;27:25–31. doi: 10.1016/j.mito.2016.01.003. PubMed DOI
Sun X., Vaghjiani V., Jayasekara W.S.N., Cain J.E., St. John J.C. The degree of mitochondrial DNA methylation in tumor models of glioblastoma and osteosarcoma. Clin. Epigenetics. 2018;10:157. doi: 10.1186/s13148-018-0590-0. PubMed DOI PMC
Upadhyay M., Agarwal S. Ironing the mitochondria: Relevance to its dynamics. Mitochondrion. 2020;50:82–87. doi: 10.1016/j.mito.2019.09.007. PubMed DOI
Bogenhagen D., Clayton D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974;249:7991–7995. doi: 10.1016/S0021-9258(19)42063-2. PubMed DOI
Laukka T., Mariani C.J., Ihantola T., Cao J.Z., Hokkanen J., Kaelin W.G., Godley L.A., Koivunen P. Fumarate and Succinate Regulate Expression of Hypoxia-inducible Genes via TET Enzymes. J. Biol. Chem. 2016;291:4256–4265. doi: 10.1074/jbc.M115.688762. PubMed DOI PMC
Salminen A., Haapasalo A., Kauppinen A., Kaarniranta K., Soininen H., Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer’s disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog. Neurobiol. 2015;131:1–20. doi: 10.1016/j.pneurobio.2015.05.001. PubMed DOI
Kaas G.A., Zhong C., Eason D.E., Ross D.L., Vachhani R.V., Ming G.-l., King J.R., Song H., Sweatt J.D. TET1 Controls CNS 5-Methylcytosine Hydroxylation, Active DNA Demethylation, Gene Transcription, and Memory Formation. Neuron. 2013;79:1086–1093. doi: 10.1016/j.neuron.2013.08.032. PubMed DOI PMC
Stoccoro A., Coppedè F. Mitochondrial DNA Methylation and Human Diseases. Int. J. Mol. Sci. 2021;22:4594. doi: 10.3390/ijms22094594. PubMed DOI PMC
Melamed P., Yosefzon Y., David C., Tsukerman A., Pnueli L. Tet Enzymes, Variants, and Differential Effects on Function. Front. Cell Dev. Biol. 2018;6:22. doi: 10.3389/fcell.2018.00022. PubMed DOI PMC
Nedoluzhko A., Mjelle R., Renström M., Skjærven K.H., Piferrer F., Fernandes J.M.O. The first mitochondrial 5-methylcytosine map in a non-model teleost (Oreochromis niloticus) reveals extensive strand-specific and non-CpG methylation. Genomics. 2021;113:3050–3057. doi: 10.1016/j.ygeno.2021.07.007. PubMed DOI
Liu Y., Chen C., Wang X., Sun Y., Zhang J., Chen J., Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells. 2022;11:2518. doi: 10.3390/cells11162518. PubMed DOI PMC
Sillen L.G. High-speed computers as supplement to graphical methods.III. twist matrix methods for minimizing error-square sum in problems with many unknown constants. Acta Chem. Scand. 1964;18:1085–1098. doi: 10.3891/acta.chem.scand.18-1085. DOI
Jakubek M., Kejík Z., Antonyová V., Kaplánek R., Sýkora D., Hromádka R., Vyhlídalová K., Martásek P., Král V. Benzoisothiazole-1,1-dioxide-based synthetic receptor for zinc ion recognition in aqueous medium and its interaction with nucleic acids. Supramol. Chem. 2019;31:19–27. doi: 10.1080/10610278.2018.1523409. DOI
Jakubek M., Kejík Z., Kaplánek R., Veselá H., Sýkora D., Martásek P., Král V. Perimidine-based synthetic receptors for determination of copper(II) in water solution. Supramol. Chem. 2018;30:218–226. doi: 10.1080/10610278.2017.1414216. DOI
Jakubek M., Kejík Z., Parchaňský V., Kaplánek R., Vasina L., Martásek P., Král V. Water soluble chromone Schiff base derivatives as fluorescence receptor for aluminium(III) Supramol. Chem. 2017;29:1–7. doi: 10.1080/10610278.2016.1153095. DOI
Abramenko N., Kejík Z., Kaplánek R., Tatar A., Brogyányi T., Pajková M., Sýkora D., Veselá K., Antonyová V., Dytrych P., et al. Spectroscopic study of in situ-formed metallocomplexes of proton pump inhibitors in water. Chem. Biol. Drug Des. 2021;97:305–314. doi: 10.1111/cbdd.13782. PubMed DOI
Wienken C.J., Baaske P., Rothbauer U., Braun D., Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 2010;1:100. doi: 10.1038/ncomms1093. PubMed DOI
Hu L., Li Z., Cheng J., Rao Q., Gong W., Liu M., Shi Y.G., Zhu J., Wang P., Xu Y. Crystal structure of TET2-DNA complex: Insight into TET-mediated 5mC oxidation. Cell. 2013;155:1545–1555. doi: 10.1016/j.cell.2013.11.020. PubMed DOI
Hu L., Lu J., Cheng J., Rao Q., Li Z., Hou H., Lou Z., Zhang L., Li W., Gong W., et al. Structural insight into substrate preference for TET-mediated oxidation. Nature. 2015;527:118–122. doi: 10.1038/nature15713. PubMed DOI
Liebschner D., Afonine P.V., Baker M.L., Bunkóczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J., et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019;75:861–877. doi: 10.1107/S2059798319011471. PubMed DOI PMC
Brooks B.R., Brooks C.L., 3rd, Mackerell A.D., Jr., Nilsson L., Petrella R.J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614. doi: 10.1002/jcc.21287. PubMed DOI PMC
Szabó P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K., Jr. Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI
Dvořánková B., Lacina L., Smetana K., Jr. Isolation of Normal Fibroblasts and Their Cancer-Associated Counterparts (CAFs) for Biomedical Research. Methods Mol. Biol. 2019;1879:393–406. doi: 10.1007/7651_2018_137. PubMed DOI