Atomic resolution studies of S1 nuclease complexes reveal details of RNA interaction with the enzyme despite multiple lattice-translocation defects
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000447
European Regional Development Fund
LM2015043
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018127
Ministerstvo Školství, Mládeže a Tělovýchovy
A1_FPBT_2022_001
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO: 86652036
Akademie Věd České Republiky
SGS22/114/OHK4/2T/14
University of Chemistry and Technology, Prague
PubMed
36189740
DOI
10.1107/s2059798322008397
PII: S2059798322008397
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus oryzae, S1 nuclease, complexes, lattice-translocation defects, nucleosides, nucleotides,
- MeSH
- Aspergillus oryzae * genetika metabolismus MeSH
- DNA MeSH
- endonukleasy chemie MeSH
- katalytická doména MeSH
- RNA * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- endonukleasy MeSH
- RNA * MeSH
S1 nuclease from Aspergillus oryzae is a single-strand-specific nuclease from the S1/P1 family that is utilized in biochemistry and biotechnology. S1 nuclease is active on both RNA and DNA but with differing catalytic efficiencies. This study clarifies its catalytic properties using a thorough comparison of differences in the binding of RNA and DNA in the active site of S1 nuclease based on X-ray structures, including two newly solved complexes of S1 nuclease with the products of RNA cleavage at atomic resolution. Conclusions derived from this comparison are valid for the whole S1/P1 nuclease family. For proper model building and refinement, multiple lattice-translocation defects present in the measured diffraction data needed to be solved. Two different approaches were tested and compared. Correction of the measured intensities proved to be superior to the use of the dislocation model of asymmetric units with partial occupancy of individual chains. As the crystals suffered from multiple lattice translocations, equations for their correction were derived de novo. The presented approach to the correction of multiple lattice-translocation defects may help to solve similar problems in the field of protein X-ray crystallography.
Citace poskytuje Crossref.org