Substrate preference, RNA binding and active site versatility of Stenotrophomonas maltophilia nuclease SmNuc1, explained by a structural study

. 2025 Jan ; 292 (1) : 129-152. [epub] 20241003

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39361520

Grantová podpora
23-06295S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/18_046/0015974 European Regional Development Fund
LM2023042 Ministerstvo Školství, Mládeže a Tělovýchovy
86652036 Akademie Věd České Republiky

Nucleases of the S1/P1 family have important applications in biotechnology and molecular biology. We have performed structural analyses of SmNuc1 nuclease from Stenotrophomonas maltophilia, including RNA cleavage product binding and mutagenesis in a newly discovered flexible Arg74-motif, involved in substrate binding and product release and likely contributing to the high catalytic rate. The Arg74Gln mutation shifts substrate preference towards RNA. Purine nucleotide binding differs compared to pyrimidines, confirming the plasticity of the active site. The enzyme-product interactions indicate a gradual, stepwise product release. The activity of SmNuc1 towards c-di-GMP in crystal resulted in a distinguished complex with the emerging product 5'-GMP. This enzyme from an opportunistic pathogen relies on specific architecture enabling high performance under broad conditions, attractive for biotechnologies.

Zobrazit více v PubMed

Ando T (1966) A nuclease specific for heat‐denatured DNA isolated from a product of Aspergillus oryzae . Biochim Biophys Acta 114, 158–168. PubMed

Mouri T, Hashida W, Shiga I & Teramoto S (1966) Studies on nucleic acid related substances in foodstuff. VII. Nucleic acid degrading enzymes of shiitake (Lentinus edodes). J Ferment Technol 44, 245–258.

Kuninaka A, Otsuka S‐I, Kobayashi Y & Sakaguchi K‐I (1959) Studies on 5′‐phosphodiesterases in microorganisms. Bull Agric Chem Soc Japan 23, 239–243.

Koval T & Dohnalek J (2017) Characteristics and application of S1‐P1 nucleases in biotechnology and medicine. Biotechnol Adv 36, 603–612. PubMed

Husťakova B, Trundova M, Adamkova K, Koval T, Duskova J & Dohnalek J (2023) A highly active S1‐P1 nuclease from the opportunistic pathogen Stenotrophomonas maltophilia cleaves c‐di‐GMP. FEBS Lett 597, 2103–2118. PubMed

Smejkal GB & Kakumanu S (2019) Enzymes and their turnover numbers. Expert Rev Proteomics 16, 543–544. PubMed

Stenesh J (2013) Biochemistry. Springer Science & Business Media, New York, NY.

Bier FF, Kleinjung F, Schmidt PM & Scheller FW (2002) Determination of the turnover number of the restriction endonuclease EcoRI using evanescent wave technology. Anal Bioanal Chem 372, 308–313. PubMed

Burell MM (1993) Enzymes of Molecular Biology. 1st edn. Humana Press, Totowa, NJ.

Filimonova M, Gubskaya V & Nuretdinov I (2014) Some features of hydrolysis of the hybrid B‐Z‐form DNA by Serratia marcescens nuclease. OnLine J Biol Sci 14, 181–187.

Oleykowski CA, Bronson Mullins CR, Chang DW & Yeung AT (1999) Incision at nucleotide insertions/deletions and base pair mismatches by the SP nuclease of spinach. Biochemistry 38, 2200–2205. PubMed

Pilato B, De Summa S, Danza K, Papadimitriou S, Zaccagna P, Paradiso A & Tommasi S (2012) DHPLC/SURVEYOR nuclease: a sensitive, rapid and affordable method to analyze BRCA1 and BRCA2 mutations in breast cancer families. Mol Biotechnol 52, 8–15. PubMed

Kovaľ T, Ostergaard LH, Lehmbeck J, Norgaard A, Lipovova P, Duskova J, Skalova T, Trundova M, Kolenko P, Fejfarova K et al. (2016) Structural and catalytic properties of S1 nuclease from Aspergillus oryzae responsible for substrate recognition, cleavage, non‐specificity, and inhibition. PLoS One 11, e0168832. PubMed PMC

Yu TF, Maestre‐Reyna M, Ko CY, Ko TP, Sun YJ, Lin TY, Shaw JF & Wang AH (2014) Structural insights of the ssDNA binding site in the multifunctional endonuclease AtBFN2 from Arabidopsis thaliana . PLoS One 9, e105821. PubMed PMC

Krela R, Poreba E & Lesniewicz K (2023) Variations in the enzymatic activity of S1‐type nucleases results from differences in their active site structures. Biochim Biophys Acta Gen Subj 1867, 130424. PubMed

Adamkova K, Koval T, Ostergaard LH, Duskova J, Maly M, Svecova L, Skalova T, Kolenko P & Dohnalek J (2022) Atomic resolution studies of S1 nuclease complexes reveal details of RNA interaction with the enzyme despite multiple lattice‐translocation defects. Acta Crystallogr D 78, 1194–1209. PubMed

Li L & Szostak JW (2014) The free energy landscape of pseudorotation in 3′‐5′ and 2′‐5′ linked nucleic acids. J Am Chem Soc 136, 2858–2865. PubMed PMC

Meyer EA, Castellano RK & Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42, 1210–1250. PubMed

Krissinel E & Henrick K (2004) Secondary‐structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D 60, 2256–2268. PubMed

Stransky J, Koval T, Podzimek T, Tycova A, Lipovova P, Matousek J, Kolenko P, Fejfarova K, Duskova J, Skalova T et al. (2015) Phosphate binding in the active centre of tomato multifunctional nuclease TBN1 and analysis of superhelix formation by the enzyme. Acta Crystallogr F 71, 1408–1415. PubMed PMC

Romier C, Dominguez R, Lahm A, Dahl O & Suck D (1998) Recognition of single‐stranded DNA by nuclease P1: high resolution crystal structures of complexes with substrate analogs. Proteins 32, 414–424. PubMed

Koval T, Lipovova P, Podzimek T, Matousek J, Duskova J, Skalova T, Stepankova A, Hasek J & Dohnalek J (2013) Plant multifunctional nuclease TBN1 with unexpected phospholipase activity: structural study and reaction‐mechanism analysis. Acta Crystallogr D 69, 213–226. PubMed

Podzimek T, Matousek J, Lipovova P, Pouckova P, Spiwok V & Santrucek J (2011) Biochemical properties of three plant nucleases with anticancer potential. Plant Sci 180, 343–351. PubMed

Fujimoto M, Kuninaka A & Yoshino H (1974) Substrate specificity of nuclease P1. Agric Biol Chem 38, 1555–1561.

Gupta SK, Kataki S, Chatterjee S, Prasad RK, Datta S, Vairale MG, Sharma S, Dwivedi SK & Gupta DK (2020) Cold adaptation in bacteria with special focus on cellulase production and its potential application. J Clean Prod 258, 120351.

Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25, 2–41. PubMed PMC

Kuddus M & Ramteke PW (2009) Cold‐active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55, 1294–1301. PubMed

Li M, Yang LR, Xu G & Wu JP (2013) Screening, purification and characterization of a novel cold‐active and organic solvent‐tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour Technol 148, 114–120. PubMed

Trundova M, Koval T, Owens RJ, Fejfarova K, Duskova J, Kolenko P & Dohnalek J (2018) Highly stable single‐strand‐specific 3′‐nuclease/nucleotidase from Legionella pneumophila . Int J Biol Macromol 114, 776–787. PubMed

Farajnia S, Alimohammadian MH, Reiner NE, Karimi M, Ajdari S & Mahboudi F (2004) Molecular characterization of a novel amastigote stage specific class I nuclease from Leishmania major . Int J Parasitol 34, 899–908. PubMed

Unger T, Jacobovitch Y, Dantes A, Bernheim R & Peleg Y (2010) Applications of the restriction free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172, 34–44. PubMed

Mueller U, Förster R, Hellmig M, Huschmann FU, Kastner A, Malecki P, Pühringer S, Röwer M, Sparta K, Steffien M et al. (2015) The macromolecular crystallography beamlines at BESSY II of the Helmholtz‐Zentrum Berlin: current status and perspectives. Eur Phys J Plus 130, 141.

Stransky J (2023) XDSkappa (0.5.0) in Zenodo , https://zenodo.org/doi/10.5281/zenodo.7594958. DOI

Kabsch W (2010) Integration, scaling, space‐group assignment and post‐refinement. Acta Crystallogr D 66, 133–144. PubMed PMC

Evans PR & Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D 69, 1204–1214. PubMed PMC

Tickle IJ, Flensburg C, Keller P, Paciorek W, Sharff A, Vonrhein C & Bricogne G (2008) STARANISO. Global Phasing Ltd., Cambridge.

Wang J, Kamtekar S, Berman AJ & Steitz TA (2005) Correction of X‐ray intensities from single crystals containing lattice‐translocation defects. Acta Crystallogr D 61, 67–74. PubMed

Maly M, Diederichs K, Dohnalek J & Kolenko P (2020) Paired refinement under the control of PAIREF. IUCrJ 7, 681–692. PubMed PMC

Vagin A & Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D 66, 22–25. PubMed

Agirre J, Atanasova M, Bagdonas H, Ballard CB, Basle A, Beilsten‐Edmands J, Borges RJ, Brown DG, Burgos‐Marmol JJ, Berrisford JM et al. (2023) The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D 79, 449–461. PubMed PMC

Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A & Lopez R (2022) Search and sequence analysis tools services from EMBL‐EBI in 2022. Nucleic Acids Res 50, W276–W279. PubMed PMC

Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66, 486–501. PubMed PMC

Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F & Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67, 355–367. PubMed PMC

Berman H, Henrick K & Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10, 980. PubMed

Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L, Kapral G, Grosse‐Kunstleve RW et al. (2010) PHENIX: a comprehensive Python‐based system for macromolecular structure solution. Acta Crystallogr D 66, 213–221. PubMed PMC

Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K et al. (2018) Improvements to the APBS biomolecular solvation software suite. Protein Sci 27, 112–128. PubMed PMC

Robert X & Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42, W320–W324. PubMed PMC

Zobrazit více v PubMed

RefSeq
WP_005410840.1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...