Substrate preference, RNA binding and active site versatility of Stenotrophomonas maltophilia nuclease SmNuc1, explained by a structural study
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-06295S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund
LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy
86652036
Akademie Věd České Republiky
PubMed
39361520
PubMed Central
PMC11705217
DOI
10.1111/febs.17265
Knihovny.cz E-zdroje
- Klíčová slova
- Stenotrophomonas maltophilia, RNA, S1/P1 nuclease, X‐ray crystallography, c‐di‐GMP cleavage,
- MeSH
- bakteriální proteiny metabolismus chemie genetika MeSH
- guanosinmonofosfát cyklický metabolismus analogy a deriváty chemie MeSH
- katalytická doména * MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- RNA metabolismus chemie genetika MeSH
- Stenotrophomonas maltophilia * enzymologie genetika metabolismus MeSH
- substrátová specifita MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- guanosinmonofosfát cyklický MeSH
- RNA MeSH
Nucleases of the S1/P1 family have important applications in biotechnology and molecular biology. We have performed structural analyses of SmNuc1 nuclease from Stenotrophomonas maltophilia, including RNA cleavage product binding and mutagenesis in a newly discovered flexible Arg74-motif, involved in substrate binding and product release and likely contributing to the high catalytic rate. The Arg74Gln mutation shifts substrate preference towards RNA. Purine nucleotide binding differs compared to pyrimidines, confirming the plasticity of the active site. The enzyme-product interactions indicate a gradual, stepwise product release. The activity of SmNuc1 towards c-di-GMP in crystal resulted in a distinguished complex with the emerging product 5'-GMP. This enzyme from an opportunistic pathogen relies on specific architecture enabling high performance under broad conditions, attractive for biotechnologies.
Czech Technical University Prague Czech Republic
Institute of Biotechnology Czech Academy of Sciences Vestec Czech Republic
Zobrazit více v PubMed
Ando T (1966) A nuclease specific for heat‐denatured DNA isolated from a product of Aspergillus oryzae . Biochim Biophys Acta 114, 158–168. PubMed
Mouri T, Hashida W, Shiga I & Teramoto S (1966) Studies on nucleic acid related substances in foodstuff. VII. Nucleic acid degrading enzymes of shiitake (Lentinus edodes). J Ferment Technol 44, 245–258.
Kuninaka A, Otsuka S‐I, Kobayashi Y & Sakaguchi K‐I (1959) Studies on 5′‐phosphodiesterases in microorganisms. Bull Agric Chem Soc Japan 23, 239–243.
Koval T & Dohnalek J (2017) Characteristics and application of S1‐P1 nucleases in biotechnology and medicine. Biotechnol Adv 36, 603–612. PubMed
Husťakova B, Trundova M, Adamkova K, Koval T, Duskova J & Dohnalek J (2023) A highly active S1‐P1 nuclease from the opportunistic pathogen Stenotrophomonas maltophilia cleaves c‐di‐GMP. FEBS Lett 597, 2103–2118. PubMed
Smejkal GB & Kakumanu S (2019) Enzymes and their turnover numbers. Expert Rev Proteomics 16, 543–544. PubMed
Stenesh J (2013) Biochemistry. Springer Science & Business Media, New York, NY.
Bier FF, Kleinjung F, Schmidt PM & Scheller FW (2002) Determination of the turnover number of the restriction endonuclease EcoRI using evanescent wave technology. Anal Bioanal Chem 372, 308–313. PubMed
Burell MM (1993) Enzymes of Molecular Biology. 1st edn. Humana Press, Totowa, NJ.
Filimonova M, Gubskaya V & Nuretdinov I (2014) Some features of hydrolysis of the hybrid B‐Z‐form DNA by Serratia marcescens nuclease. OnLine J Biol Sci 14, 181–187.
Oleykowski CA, Bronson Mullins CR, Chang DW & Yeung AT (1999) Incision at nucleotide insertions/deletions and base pair mismatches by the SP nuclease of spinach. Biochemistry 38, 2200–2205. PubMed
Pilato B, De Summa S, Danza K, Papadimitriou S, Zaccagna P, Paradiso A & Tommasi S (2012) DHPLC/SURVEYOR nuclease: a sensitive, rapid and affordable method to analyze BRCA1 and BRCA2 mutations in breast cancer families. Mol Biotechnol 52, 8–15. PubMed
Kovaľ T, Ostergaard LH, Lehmbeck J, Norgaard A, Lipovova P, Duskova J, Skalova T, Trundova M, Kolenko P, Fejfarova K et al. (2016) Structural and catalytic properties of S1 nuclease from Aspergillus oryzae responsible for substrate recognition, cleavage, non‐specificity, and inhibition. PLoS One 11, e0168832. PubMed PMC
Yu TF, Maestre‐Reyna M, Ko CY, Ko TP, Sun YJ, Lin TY, Shaw JF & Wang AH (2014) Structural insights of the ssDNA binding site in the multifunctional endonuclease AtBFN2 from Arabidopsis thaliana . PLoS One 9, e105821. PubMed PMC
Krela R, Poreba E & Lesniewicz K (2023) Variations in the enzymatic activity of S1‐type nucleases results from differences in their active site structures. Biochim Biophys Acta Gen Subj 1867, 130424. PubMed
Adamkova K, Koval T, Ostergaard LH, Duskova J, Maly M, Svecova L, Skalova T, Kolenko P & Dohnalek J (2022) Atomic resolution studies of S1 nuclease complexes reveal details of RNA interaction with the enzyme despite multiple lattice‐translocation defects. Acta Crystallogr D 78, 1194–1209. PubMed
Li L & Szostak JW (2014) The free energy landscape of pseudorotation in 3′‐5′ and 2′‐5′ linked nucleic acids. J Am Chem Soc 136, 2858–2865. PubMed PMC
Meyer EA, Castellano RK & Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42, 1210–1250. PubMed
Krissinel E & Henrick K (2004) Secondary‐structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D 60, 2256–2268. PubMed
Stransky J, Koval T, Podzimek T, Tycova A, Lipovova P, Matousek J, Kolenko P, Fejfarova K, Duskova J, Skalova T et al. (2015) Phosphate binding in the active centre of tomato multifunctional nuclease TBN1 and analysis of superhelix formation by the enzyme. Acta Crystallogr F 71, 1408–1415. PubMed PMC
Romier C, Dominguez R, Lahm A, Dahl O & Suck D (1998) Recognition of single‐stranded DNA by nuclease P1: high resolution crystal structures of complexes with substrate analogs. Proteins 32, 414–424. PubMed
Koval T, Lipovova P, Podzimek T, Matousek J, Duskova J, Skalova T, Stepankova A, Hasek J & Dohnalek J (2013) Plant multifunctional nuclease TBN1 with unexpected phospholipase activity: structural study and reaction‐mechanism analysis. Acta Crystallogr D 69, 213–226. PubMed
Podzimek T, Matousek J, Lipovova P, Pouckova P, Spiwok V & Santrucek J (2011) Biochemical properties of three plant nucleases with anticancer potential. Plant Sci 180, 343–351. PubMed
Fujimoto M, Kuninaka A & Yoshino H (1974) Substrate specificity of nuclease P1. Agric Biol Chem 38, 1555–1561.
Gupta SK, Kataki S, Chatterjee S, Prasad RK, Datta S, Vairale MG, Sharma S, Dwivedi SK & Gupta DK (2020) Cold adaptation in bacteria with special focus on cellulase production and its potential application. J Clean Prod 258, 120351.
Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25, 2–41. PubMed PMC
Kuddus M & Ramteke PW (2009) Cold‐active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55, 1294–1301. PubMed
Li M, Yang LR, Xu G & Wu JP (2013) Screening, purification and characterization of a novel cold‐active and organic solvent‐tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour Technol 148, 114–120. PubMed
Trundova M, Koval T, Owens RJ, Fejfarova K, Duskova J, Kolenko P & Dohnalek J (2018) Highly stable single‐strand‐specific 3′‐nuclease/nucleotidase from Legionella pneumophila . Int J Biol Macromol 114, 776–787. PubMed
Farajnia S, Alimohammadian MH, Reiner NE, Karimi M, Ajdari S & Mahboudi F (2004) Molecular characterization of a novel amastigote stage specific class I nuclease from Leishmania major . Int J Parasitol 34, 899–908. PubMed
Unger T, Jacobovitch Y, Dantes A, Bernheim R & Peleg Y (2010) Applications of the restriction free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172, 34–44. PubMed
Mueller U, Förster R, Hellmig M, Huschmann FU, Kastner A, Malecki P, Pühringer S, Röwer M, Sparta K, Steffien M et al. (2015) The macromolecular crystallography beamlines at BESSY II of the Helmholtz‐Zentrum Berlin: current status and perspectives. Eur Phys J Plus 130, 141.
Stransky J (2023) XDSkappa (0.5.0) in Zenodo , https://zenodo.org/doi/10.5281/zenodo.7594958. DOI
Kabsch W (2010) Integration, scaling, space‐group assignment and post‐refinement. Acta Crystallogr D 66, 133–144. PubMed PMC
Evans PR & Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D 69, 1204–1214. PubMed PMC
Tickle IJ, Flensburg C, Keller P, Paciorek W, Sharff A, Vonrhein C & Bricogne G (2008) STARANISO. Global Phasing Ltd., Cambridge.
Wang J, Kamtekar S, Berman AJ & Steitz TA (2005) Correction of X‐ray intensities from single crystals containing lattice‐translocation defects. Acta Crystallogr D 61, 67–74. PubMed
Maly M, Diederichs K, Dohnalek J & Kolenko P (2020) Paired refinement under the control of PAIREF. IUCrJ 7, 681–692. PubMed PMC
Vagin A & Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D 66, 22–25. PubMed
Agirre J, Atanasova M, Bagdonas H, Ballard CB, Basle A, Beilsten‐Edmands J, Borges RJ, Brown DG, Burgos‐Marmol JJ, Berrisford JM et al. (2023) The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D 79, 449–461. PubMed PMC
Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A & Lopez R (2022) Search and sequence analysis tools services from EMBL‐EBI in 2022. Nucleic Acids Res 50, W276–W279. PubMed PMC
Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66, 486–501. PubMed PMC
Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F & Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67, 355–367. PubMed PMC
Berman H, Henrick K & Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10, 980. PubMed
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L, Kapral G, Grosse‐Kunstleve RW et al. (2010) PHENIX: a comprehensive Python‐based system for macromolecular structure solution. Acta Crystallogr D 66, 213–221. PubMed PMC
Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K et al. (2018) Improvements to the APBS biomolecular solvation software suite. Protein Sci 27, 112–128. PubMed PMC
Robert X & Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42, W320–W324. PubMed PMC
RefSeq
WP_005410840.1