• This record comes from PubMed

Electrochemical characterization of leached steel-making sludge

. 2022 Oct 06 ; 12 (1) : 16691. [epub] 20221006

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 36202874
PubMed Central PMC9537180
DOI 10.1038/s41598-022-20980-4
PII: 10.1038/s41598-022-20980-4
Knihovny.cz E-resources

In this work, the electrochemical properties of the leached sludge, magnetite and zinc ferrite were studied. Acetic acid was used as a leaching reagent because, in recent years, there has been a surge of interest in using zinc-containing materials as photocatalysts, with acetic acid finding application in their preparation. Various methodological approaches were used, but the best results were achieved with a combination of 1-3 h leaching in 0.01 M acetic acid with a solid/liquid ratio of 500. In this arrangement, zincite was almost completely removed from the sludge, while zinc ferrite and magnetite remained in the solid residue. Ex situ analyses of the main leaching products were performed by X-ray diffraction, infrared spectroscopy, and thermogravimetry. The electrochemical behaviour of solid residue and model systems, that are micromagnetite and zinc ferrite, was studied in alkaline media by means of modified carbon paste electrodes, cyclic voltammetry, and chronocoulometry, with a suitable potential window ranging from 0 to 1.5 V. In summary, a linear dependence of the anodic and cathodic peak height on the square root of the scan rate was found. The position of the anodic and cathodic peaks shifted slightly with scan rate, only at low rates, up to 25 mV/s, the individual peaks coincided. The electrochemical response suggested a quasireversible process.

See more in PubMed

Stefanova A, Aromaa J, Forsen O. Alkaline leaching of zinc from stainless steel electric arc furnace dusts. Probl. Miner. Process. 2015;51(1):293–302. doi: 10.5277/ppmp150126. DOI

Jha MK, Kumar V, Singh RJ. Review of hydrometallurgical recovery of zinc from industrial wastes. Resour. Conserv. Recycl. 2001;33:1–22. doi: 10.1016/S0921-3449(00)00095-1. DOI

Al-Makhadmeh LA, Batiha MA, Al-Harahsheh MS, Altarawneh IS, Rawadieh SE. The effectiveness of Zn leaching from EAFD using caustic soda. Water Air Soil Pollut. 2018;229:33. doi: 10.1007/s11270-018-3694-4. DOI

Langová Š, Riplová J, Vallová S. Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution. Hydrometallurgy. 2007;87:157–162. doi: 10.1016/j.hydromet.2007.03.002. DOI

Halli P, Hamuyuni J, Revitzer H, Lundström M. Selection of leaching media for metal dissolution from electric arc furnace dust. J. Clean Prod. 2017;164:265–276. doi: 10.1016/j.jclepro.2017.06.212. DOI

Park SJ, Son I, Sohn HS. Leaching of Zinc from EAF dust by sulfuric acid. Korean J. Met. Mater. 2015;53:793–800. doi: 10.3365/KJMM.2015.53.11.793. DOI

Siedlecka E. Comprehensive use of products generated during acid leaching of basic oxygen furnace sludge. J. Clean Prod. 2020;264:121543. doi: 10.1016/j.jclepro.2020.121543. DOI

Maia LC, Santos GR, Gurgel LVA, Carvalho CF. Iron recovery from the coarse fraction of basic oxygen furnace sludge. Part I: Optimization of acid leaching conditions. Environ. Sci. Pollut. Res. 2020;27:40135–40147. doi: 10.1007/s11356-020-09910-x. PubMed DOI

Langová Š, Matýsek D. Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation. Hydrometallurgy. 2010;101:171–173. doi: 10.1016/j.hydromet.2010.01.003. DOI

Holloway PC, Etsell TH, Murland AL. Modification of Waelz kiln processing of La Oroya zinc ferrite. Min. Metall. Explor. 2008;25:97–104. doi: 10.1007/BF03403393. DOI

Reiter W, Rieger J, Lasser M, Raupenstrauch H, Tappeiner T. The RecoDust process—upscale of a pilot plant. Steel Res. Int. 2020;91:2000191. doi: 10.1002/srin.202000191. DOI

Pickles CA. Thermodynamic analysis of the separation of zinc and lead from electric arc furnace dust by selective reduction with metallic iron. Sep. Purif. Technol. 2008;59:115–128. doi: 10.1016/j.seppur.2007.05.032. DOI

Yan H, Chai L, Peng B, Li M, Peng N, Hou D. A novel method to recover zinc and iron from zinc leaching residue. Miner. Eng. 2014;55:103–110. doi: 10.1016/j.mineng.2013.09.015. DOI

Li Y, Liu H, Peng B, Min X, Hu M, Peng N, Yuang Y, Lei J. Study on separating of zinc and iron from zinc leaching residues by roasting with ammonium sulphate. Hydrometallurgy. 2015;158:42–48. doi: 10.1016/j.hydromet.2015.10.004. DOI

Kashyap V, Taylor P. Selective extraction of Zinc from Zinc ferrite. Min. Metall. Explor. 2021;38:27–36. doi: 10.1007/s42461-020-00306-6. DOI

Cantarino MV, Filho CC, Borges Mansur M. Selective removal of zinc from basic oxygen furnace sludges. Hydrometallurgy. 2012;111–112(1):124–128. doi: 10.1016/j.hydromet.2011.11.004. DOI

Youcai Z, Stanforth R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J. Hazard Mater. 2000;80:223–240. doi: 10.1016/S0304-3894(00)00305-8. PubMed DOI

Xia DK, Pickles CA. Caustic roasting and leaching of electric arc furnace dust. Can. Metall. Q. 2013;38:175–186. doi: 10.1179/cmq.1999.38.3.175. DOI

Vieira CMF, Amaral LF, Monteiro SN. Recycling of Steelmaking Plant Wastes in Clay Bricks, Current Topics in the Utilization of Clay in Industrial and Medical Applications, Mansoor Zoveidavianpoor. Vienna: IntechOpen; 2018.

Rozumová L. Adsorption and desorption study of locally available BOF sludge to remove metal ions from aqueous solutions. Defect. Diffus. Forum. 2019;394:33–38. doi: 10.4028/www.scientific.net/DDF.394.33. DOI

Jafaripour, A. Utilization of waste gas sludge for waste water treatment. (University of Birmingham, 2014). https://etheses.bham.ac.uk/id/eprint/4784/

Agrawal RK, Pandey PK. Productive recycling of basic oxygen furnace sludge in integrated steel plant. J. Sci. Ind. Res. 2005;64:702–706.

Roslan NH, Ismail M, Abdul-Majid Z, Ghoreishiamiri S, Muhammadd B. Performance of steel slag and steel sludge in concrete. Constr. Build Mater. 2016;104:16–24. doi: 10.1016/j.conbuildmat.2015.12.008. DOI

Williams G, Kamat PV. Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir. 2009;25:13869–13873. doi: 10.1021/la900905h. PubMed DOI

Akhavan O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano. 2010;4:4174–4180. doi: 10.1021/nn1007429. PubMed DOI

Xu T, Zhang L, Cheng H, Zhu Y. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and. The mechanism study. Appl. Catal. B Environ. 2011;101:382–387. doi: 10.1016/j.apcatb.2010.10.007. DOI

Ameen S, Shaheer Akhtar M, Seo H-K, Shin HS. Advanced ZnO–graphene oxide nanohybrid and its photocatalytic applications. Mater. Lett. 2013;100:261–265. doi: 10.1016/j.matlet.2013.03.012. DOI

Lv R, Wang X, Lv W, Xu Y, Ge Y, He H, Li G, Wu X, Li X, Li Q. Facile synthesis of ZnO nanorods grown on graphene sheets and its enhanced photocatalytic efficiency. J. Chem. Technol. Biot. 2015;90:550–558. doi: 10.1002/jctb.4347. DOI

Ravichandran K, Nithiyadevi K, Sakthivel B, Arun T, Sindhuja E, Muruganandam G. Synthesis of ZnO:Co/rGO nanocomposites for enhanced photocatalytic and antibacterial activities. Ceram. Int. 2016;42:17539–17550. doi: 10.1016/j.ceram.int.2016.08.067. DOI

Tayebi A, Outokesh M, Tayebi M, Shafikhani A, Sevinc SS. ZnO quantum dots—graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye. J. Alloys Compd. 2016;663:738–749. doi: 10.1016/j.jallcom.2015.12.169. DOI

Zhu L, Liu Z, Xia P, Li H, Xie Y. Synthesis of hierarchical ZnO–graphene composites with enhanced photocatalytic activity. Ceram. Int. 2018;44:849–856. doi: 10.1016/j.ceram.int.2017.10.009. DOI

Wu Z, Wang L. Graphene oxide (GO) doping hexagonal flowerlike ZnO as potential enhancer of photocatalytic ability. Mater. Lett. 2019;234:287–290. doi: 10.1016/j.matlet.2018.09.128. DOI

Zare M, Sarhadi H. A novel vitamin B9 sensor based on modified screen-printed electrode. J. Electrochem. Sci. Eng. 2021;11(1):1–9. doi: 10.5599/jese.878. DOI

Arun Kumar NS, Ashoka S, Malingappa P. Nano zinc ferrite modified electrode as a novel electrochemical sensing platform in simultaneous measurement of trace level lead and cadmium. J. Environ. Chem. Eng. 2018;6:6939–6946. doi: 10.1016/j.jece.2018.10.041. DOI

Surendra BS, Nagaswarupa HP, Hemashree MU, Khanum J. Jatropha extract mediated synthesis of ZnFe2O4 nanopowder: Excellent performance as an electrochemical sensor, UV photocatalyst and an antibacterial aktivity. Chem. Phys. Lett. 2020;739:136980. doi: 10.1016/j.cplett.2019.136980. DOI

Matinise N, Kaviyarasu K, Mongwaketsi N, Khamlich S, Kotsedi L, Mayedwa N, Maaza M. Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications. Appl. Surf. Sci. 2018;446:66–73. doi: 10.1016/j.apsusc.2018.02.187. DOI

Ghasemi A, Kheirmand M, Heli H. A study on the supercapacitive behavior of zinc substituted manganese ferrite nanoparticles. J. Iran Chem. Soc. 2019;16:841–849. doi: 10.1007/s13738-018-1560-3. DOI

Nivetha R, Nirmala Grace A. Manganese and zinc ferrite based graphene nanocomposites for electrochemical hydrogen evolution reaction. J. Alloys Comp. 2019;796:185–195. doi: 10.1016/j.jallcom.2019.05.021. DOI

Škuta R, Kostura B, Langová Š, Ritz M, Foniok K, Študentová S, Pavlovský J, Novák V, Matýsek D. Utilization of metallurgical waste for the preparation of photocatalytically active composites based on ZnO–graphene oxide. Chem. Pap. 2021;75:3891–3900. doi: 10.1007/s11696-021-01628-5. DOI

Langová, Š. & Matýsek, D. Leaching of steel-making wastes in organic acids. In Proceedings 29th International Conference on Metallurgy and Materials 126–130 (Brno, Czech Republic, EU, 2020) 10.37904/metal.2020.3440

Somvanshi SB, Kharat PB, Khedkar MV, Jadhav KM. Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: Magnetic hyperthermia study towards biomedical applications. Ceram. Int. 2020;46:7642–7653. doi: 10.1016/j.ceramint.2019.11.265. DOI

Novák V, Raška P, Matýsek D, Kostura B. Electrochemical characterization of fine-grained blast furnace sludge after acid leaching using carbon paste electrode. J. Solid State Electr. 2018;22:3457–3466. doi: 10.1007/s10008-018-4056-2. DOI

Novák V, Kostura B, Raška P, Peterek Dědková K, Mendes RG, Gemming T, Leško J. Oxide nanolayer formation on surface of modified blast furnace sludge particles during voltammetric cycling in alkaline media. J. Solid State Electr. 2020;25(1):365–372. doi: 10.1007/s10008-020-04819-4. DOI

Zhang Y, Zheng JB. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochim. Acta. 2007;52:7210–7216. doi: 10.1016/j.electacta.2007.05.039. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...