Electrochemical characterization of leached steel-making sludge
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36202874
PubMed Central
PMC9537180
DOI
10.1038/s41598-022-20980-4
PII: 10.1038/s41598-022-20980-4
Knihovny.cz E-resources
- MeSH
- Electrochemical Techniques MeSH
- Electrodes MeSH
- Steel * MeSH
- Sewage * MeSH
- Ferrosoferric Oxide MeSH
- Carbon chemistry MeSH
- Ferric Compounds MeSH
- Zinc chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ferrite MeSH Browser
- Steel * MeSH
- Sewage * MeSH
- Ferrosoferric Oxide MeSH
- Carbon MeSH
- Ferric Compounds MeSH
- Zinc MeSH
In this work, the electrochemical properties of the leached sludge, magnetite and zinc ferrite were studied. Acetic acid was used as a leaching reagent because, in recent years, there has been a surge of interest in using zinc-containing materials as photocatalysts, with acetic acid finding application in their preparation. Various methodological approaches were used, but the best results were achieved with a combination of 1-3 h leaching in 0.01 M acetic acid with a solid/liquid ratio of 500. In this arrangement, zincite was almost completely removed from the sludge, while zinc ferrite and magnetite remained in the solid residue. Ex situ analyses of the main leaching products were performed by X-ray diffraction, infrared spectroscopy, and thermogravimetry. The electrochemical behaviour of solid residue and model systems, that are micromagnetite and zinc ferrite, was studied in alkaline media by means of modified carbon paste electrodes, cyclic voltammetry, and chronocoulometry, with a suitable potential window ranging from 0 to 1.5 V. In summary, a linear dependence of the anodic and cathodic peak height on the square root of the scan rate was found. The position of the anodic and cathodic peaks shifted slightly with scan rate, only at low rates, up to 25 mV/s, the individual peaks coincided. The electrochemical response suggested a quasireversible process.
See more in PubMed
Stefanova A, Aromaa J, Forsen O. Alkaline leaching of zinc from stainless steel electric arc furnace dusts. Probl. Miner. Process. 2015;51(1):293–302. doi: 10.5277/ppmp150126. DOI
Jha MK, Kumar V, Singh RJ. Review of hydrometallurgical recovery of zinc from industrial wastes. Resour. Conserv. Recycl. 2001;33:1–22. doi: 10.1016/S0921-3449(00)00095-1. DOI
Al-Makhadmeh LA, Batiha MA, Al-Harahsheh MS, Altarawneh IS, Rawadieh SE. The effectiveness of Zn leaching from EAFD using caustic soda. Water Air Soil Pollut. 2018;229:33. doi: 10.1007/s11270-018-3694-4. DOI
Langová Š, Riplová J, Vallová S. Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution. Hydrometallurgy. 2007;87:157–162. doi: 10.1016/j.hydromet.2007.03.002. DOI
Halli P, Hamuyuni J, Revitzer H, Lundström M. Selection of leaching media for metal dissolution from electric arc furnace dust. J. Clean Prod. 2017;164:265–276. doi: 10.1016/j.jclepro.2017.06.212. DOI
Park SJ, Son I, Sohn HS. Leaching of Zinc from EAF dust by sulfuric acid. Korean J. Met. Mater. 2015;53:793–800. doi: 10.3365/KJMM.2015.53.11.793. DOI
Siedlecka E. Comprehensive use of products generated during acid leaching of basic oxygen furnace sludge. J. Clean Prod. 2020;264:121543. doi: 10.1016/j.jclepro.2020.121543. DOI
Maia LC, Santos GR, Gurgel LVA, Carvalho CF. Iron recovery from the coarse fraction of basic oxygen furnace sludge. Part I: Optimization of acid leaching conditions. Environ. Sci. Pollut. Res. 2020;27:40135–40147. doi: 10.1007/s11356-020-09910-x. PubMed DOI
Langová Š, Matýsek D. Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation. Hydrometallurgy. 2010;101:171–173. doi: 10.1016/j.hydromet.2010.01.003. DOI
Holloway PC, Etsell TH, Murland AL. Modification of Waelz kiln processing of La Oroya zinc ferrite. Min. Metall. Explor. 2008;25:97–104. doi: 10.1007/BF03403393. DOI
Reiter W, Rieger J, Lasser M, Raupenstrauch H, Tappeiner T. The RecoDust process—upscale of a pilot plant. Steel Res. Int. 2020;91:2000191. doi: 10.1002/srin.202000191. DOI
Pickles CA. Thermodynamic analysis of the separation of zinc and lead from electric arc furnace dust by selective reduction with metallic iron. Sep. Purif. Technol. 2008;59:115–128. doi: 10.1016/j.seppur.2007.05.032. DOI
Yan H, Chai L, Peng B, Li M, Peng N, Hou D. A novel method to recover zinc and iron from zinc leaching residue. Miner. Eng. 2014;55:103–110. doi: 10.1016/j.mineng.2013.09.015. DOI
Li Y, Liu H, Peng B, Min X, Hu M, Peng N, Yuang Y, Lei J. Study on separating of zinc and iron from zinc leaching residues by roasting with ammonium sulphate. Hydrometallurgy. 2015;158:42–48. doi: 10.1016/j.hydromet.2015.10.004. DOI
Kashyap V, Taylor P. Selective extraction of Zinc from Zinc ferrite. Min. Metall. Explor. 2021;38:27–36. doi: 10.1007/s42461-020-00306-6. DOI
Cantarino MV, Filho CC, Borges Mansur M. Selective removal of zinc from basic oxygen furnace sludges. Hydrometallurgy. 2012;111–112(1):124–128. doi: 10.1016/j.hydromet.2011.11.004. DOI
Youcai Z, Stanforth R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J. Hazard Mater. 2000;80:223–240. doi: 10.1016/S0304-3894(00)00305-8. PubMed DOI
Xia DK, Pickles CA. Caustic roasting and leaching of electric arc furnace dust. Can. Metall. Q. 2013;38:175–186. doi: 10.1179/cmq.1999.38.3.175. DOI
Vieira CMF, Amaral LF, Monteiro SN. Recycling of Steelmaking Plant Wastes in Clay Bricks, Current Topics in the Utilization of Clay in Industrial and Medical Applications, Mansoor Zoveidavianpoor. Vienna: IntechOpen; 2018.
Rozumová L. Adsorption and desorption study of locally available BOF sludge to remove metal ions from aqueous solutions. Defect. Diffus. Forum. 2019;394:33–38. doi: 10.4028/www.scientific.net/DDF.394.33. DOI
Jafaripour, A. Utilization of waste gas sludge for waste water treatment. (University of Birmingham, 2014). https://etheses.bham.ac.uk/id/eprint/4784/
Agrawal RK, Pandey PK. Productive recycling of basic oxygen furnace sludge in integrated steel plant. J. Sci. Ind. Res. 2005;64:702–706.
Roslan NH, Ismail M, Abdul-Majid Z, Ghoreishiamiri S, Muhammadd B. Performance of steel slag and steel sludge in concrete. Constr. Build Mater. 2016;104:16–24. doi: 10.1016/j.conbuildmat.2015.12.008. DOI
Williams G, Kamat PV. Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir. 2009;25:13869–13873. doi: 10.1021/la900905h. PubMed DOI
Akhavan O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano. 2010;4:4174–4180. doi: 10.1021/nn1007429. PubMed DOI
Xu T, Zhang L, Cheng H, Zhu Y. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and. The mechanism study. Appl. Catal. B Environ. 2011;101:382–387. doi: 10.1016/j.apcatb.2010.10.007. DOI
Ameen S, Shaheer Akhtar M, Seo H-K, Shin HS. Advanced ZnO–graphene oxide nanohybrid and its photocatalytic applications. Mater. Lett. 2013;100:261–265. doi: 10.1016/j.matlet.2013.03.012. DOI
Lv R, Wang X, Lv W, Xu Y, Ge Y, He H, Li G, Wu X, Li X, Li Q. Facile synthesis of ZnO nanorods grown on graphene sheets and its enhanced photocatalytic efficiency. J. Chem. Technol. Biot. 2015;90:550–558. doi: 10.1002/jctb.4347. DOI
Ravichandran K, Nithiyadevi K, Sakthivel B, Arun T, Sindhuja E, Muruganandam G. Synthesis of ZnO:Co/rGO nanocomposites for enhanced photocatalytic and antibacterial activities. Ceram. Int. 2016;42:17539–17550. doi: 10.1016/j.ceram.int.2016.08.067. DOI
Tayebi A, Outokesh M, Tayebi M, Shafikhani A, Sevinc SS. ZnO quantum dots—graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye. J. Alloys Compd. 2016;663:738–749. doi: 10.1016/j.jallcom.2015.12.169. DOI
Zhu L, Liu Z, Xia P, Li H, Xie Y. Synthesis of hierarchical ZnO–graphene composites with enhanced photocatalytic activity. Ceram. Int. 2018;44:849–856. doi: 10.1016/j.ceram.int.2017.10.009. DOI
Wu Z, Wang L. Graphene oxide (GO) doping hexagonal flowerlike ZnO as potential enhancer of photocatalytic ability. Mater. Lett. 2019;234:287–290. doi: 10.1016/j.matlet.2018.09.128. DOI
Zare M, Sarhadi H. A novel vitamin B9 sensor based on modified screen-printed electrode. J. Electrochem. Sci. Eng. 2021;11(1):1–9. doi: 10.5599/jese.878. DOI
Arun Kumar NS, Ashoka S, Malingappa P. Nano zinc ferrite modified electrode as a novel electrochemical sensing platform in simultaneous measurement of trace level lead and cadmium. J. Environ. Chem. Eng. 2018;6:6939–6946. doi: 10.1016/j.jece.2018.10.041. DOI
Surendra BS, Nagaswarupa HP, Hemashree MU, Khanum J. Jatropha extract mediated synthesis of ZnFe2O4 nanopowder: Excellent performance as an electrochemical sensor, UV photocatalyst and an antibacterial aktivity. Chem. Phys. Lett. 2020;739:136980. doi: 10.1016/j.cplett.2019.136980. DOI
Matinise N, Kaviyarasu K, Mongwaketsi N, Khamlich S, Kotsedi L, Mayedwa N, Maaza M. Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications. Appl. Surf. Sci. 2018;446:66–73. doi: 10.1016/j.apsusc.2018.02.187. DOI
Ghasemi A, Kheirmand M, Heli H. A study on the supercapacitive behavior of zinc substituted manganese ferrite nanoparticles. J. Iran Chem. Soc. 2019;16:841–849. doi: 10.1007/s13738-018-1560-3. DOI
Nivetha R, Nirmala Grace A. Manganese and zinc ferrite based graphene nanocomposites for electrochemical hydrogen evolution reaction. J. Alloys Comp. 2019;796:185–195. doi: 10.1016/j.jallcom.2019.05.021. DOI
Škuta R, Kostura B, Langová Š, Ritz M, Foniok K, Študentová S, Pavlovský J, Novák V, Matýsek D. Utilization of metallurgical waste for the preparation of photocatalytically active composites based on ZnO–graphene oxide. Chem. Pap. 2021;75:3891–3900. doi: 10.1007/s11696-021-01628-5. DOI
Langová, Š. & Matýsek, D. Leaching of steel-making wastes in organic acids. In Proceedings 29th International Conference on Metallurgy and Materials 126–130 (Brno, Czech Republic, EU, 2020) 10.37904/metal.2020.3440
Somvanshi SB, Kharat PB, Khedkar MV, Jadhav KM. Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: Magnetic hyperthermia study towards biomedical applications. Ceram. Int. 2020;46:7642–7653. doi: 10.1016/j.ceramint.2019.11.265. DOI
Novák V, Raška P, Matýsek D, Kostura B. Electrochemical characterization of fine-grained blast furnace sludge after acid leaching using carbon paste electrode. J. Solid State Electr. 2018;22:3457–3466. doi: 10.1007/s10008-018-4056-2. DOI
Novák V, Kostura B, Raška P, Peterek Dědková K, Mendes RG, Gemming T, Leško J. Oxide nanolayer formation on surface of modified blast furnace sludge particles during voltammetric cycling in alkaline media. J. Solid State Electr. 2020;25(1):365–372. doi: 10.1007/s10008-020-04819-4. DOI
Zhang Y, Zheng JB. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochim. Acta. 2007;52:7210–7216. doi: 10.1016/j.electacta.2007.05.039. DOI