An experimental study on post-mortem dissolution and overgrowth processes affecting coccolith assemblages: A rapid and complex process

. 2023 Mar ; 21 (2) : 193-209. [epub] 20221011

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36218003

Coccolith dissolution together with post-mortem morphological features are immensely important phenomena that can affect assemblage compositions, complicate taxonomic identification as well as provide valuable palaeoenvironmental insights. This study summarizes the effects of pH oscillations on post-mortem coccolith morphologies and the abundances and compositions of calcareous nannoplankton assemblages in three distinct types of material-(i) Cretaceous chalk, (ii) Miocene marls, and (iii) late Holocene calcareous ooze. Two independent experimental runs within a semi-enclosed system setting were realized to observe assemblage alterations. One experiment was realized with the presence of bacteria and, in contrast, the second one inhibited their potential effect on the studied system. The pH was gradually decreased within the range of 8.3-6.4 using a reaction of CO2 with H2 O forming weak carbonic acid (H2 CO3 ), thereby affecting [ CO 3 2 - ]. Further, a subsequent overgrowth study was carried out during spontaneous degassing accompanied by a gradual pH rise. The experiment revealed that the process and intensity of coccolith corrosion and subsequent overgrowth build-ups are influenced by a plethora of different factors such as (i) pH and associated seawater chemistry, (ii) mineral composition of the sediment, (iii) the presence of coccoliths within a protective substrate (faecal pellets, pores, pits), and (iv) the presence/absence of bacteria. Nannoplankton assemblages with corroded coccoliths or with coccoliths with overgrowth build-ups showed that the observed relative abundances of taxa experienced alteration from the original compositions. Additionally, extreme pH oscillations may result in enhanced morphological changes that make coccoliths unidentifiable structures, and might even evoke the absence of coccoliths in the fossil record.

Zobrazit více v PubMed

Adelseck, C. G. J., Geehan, G. W., & Roth, P. H. (1973). Experimental evidence for the selective dissolution and overgrowth of calcareous nannofossils during diagenesis. Geological Society of America Bulletin, 84, 2755-2762.

Ardelan, M. V., Steinnes, E., Lierhagen, S., & Linde, S. O. (2009). Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment. Science of the Total Environment, 407, 6255-6266.

Ben-Yaakov, S. (1973). pH buffering of pore water of recent anoxic marine sediments. Limnology and Oceanography, 18, 86-94. https://doi.org/10.4319/lo.1973.18.1.0086

Berger, W. H. (1973). Deep-sea carbonates: Evidence for a coccolith lysocline. Deep Sea Research, 20, 917-921.

Bucher, K., & Grapes, G. (2011). Petrogenesis of metamorphic rocks (p. 428). Springer-Verlag. https://doi.org/10.1007/978-3-540-74169-5

Cai, W.-J., Reimers, C. E., & Shaw, T. (1995). Microelectrode studies of organic carbon degradation and calcite dissolution at a California continental rise site. Geochimica et Cosmochimica Acta, 59, 497-511. https://doi.org/10.1016/0016-7037(95)00316-R

De Muynck, W., Verbeken, K., De Belie, N., & Verstraete, W. (2013). Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Applied Microbiology and Biotechnology, 97, 1335-1347. https://doi.org/10.1007/s00253-012-3997-0

Doney, S. C., Balch, W. M., Fabry, V. J., & Feely, A. (2009). Ocean acidification: A critical emerging problem for the ocean sciences. Oceanography, 22, 18-27.

Drew, G. H. (1914). On the precipitation of calcium carbonate in the sea by marine denitrifying bacteria (Vol. 1825, pp. 9-45). Carnegie Institution Washington Publications.

Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., & Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305(5682), 362-366.

González-Muñoz, M. T., Rodriguez-Navarro, C., Martínez-Ruiz, F., Arias, J. M., Merroun, M. L., & Rodriguez-Gallego, M. (2010). Bacterial biomineralization: New insights from Myxococcus-induced mineral precipitation. Geological Society - Special Publications, 336, 31-50. https://doi.org/10.1144/SP336.3

Hassenkam, T., Johnsson, A., Bechgaard, K., & Stipp, S. L. S. (2011). Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8571-8576. https://doi.org/10.1073/pnas.1009447108

Hay, W. W. (2004). Carbonate fluxes and calcareous nannoplankton. In H. Thierstein & J. Young (Eds.), Coccolithophores: From molecular processes to global impact (pp. 509-528). Springer.

Hill, M. E. (1976). Lower cretaceous calcareous nannofossils from Texas and Oklahoma. Palaeontographica Abteilung B, 156, 103-179.

Holcová, K., Brzobohatý, R., Kopecká, J., & Nehyba, S. (2015). Reconstruction of the unusual middle Miocene (Badenian) palaeoenvironment of the Carpathian foredeep (Lomnice/Tišnov denudational relict, Czech Republic). Geological Quarterly, 59(4), 654-678. https://doi.org/10.7306/gq.1249

Holcová, K., Kopecká, J., & Scheiner, F. (2018). An imprint of the Mediterranean middle Miocene circulation pattern in a satellite sea during the Langhian: A case study from the Carpathian Foredeep (Central Paratethys). Palaeogeography Palaeoclimatology Palaeoecology, 514, 36-348.

Honjo, S., & Roman, M. R. (1978). Marine copepod fecal pellets: Production, preservation and sedimentation. Journal of Marine Research, 36, 45-57.

Jiang, L. Q., Cai, W. J., Feely, R. A., Wang, Y., Guo, X., Gledhill, D. K., Hu, X., Arzayus, F., Chen, F., Hartmann, J., & Zhang, L. (2010). Carbonate mineral saturation states along the US East Coast. Limnology and Oceanography, 55(6), 2424-2432.

Jin, X., Liu, C., & Zhang, H. (2019). Coccolith morphological and assemblage responses to dissolution in the recent sediments of the East China Sea. Marine Micropaleontology, 152, 101709. https://doi.org/10.1016/j.marmicro.2018.09.001

Little, M. G., & Jackson, R. B. (2010). Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers. Environmental Science and Technology, 44, 9225-9232.

Madras, G., & McCoy, B. J. (2002). Numerical and similarity solutions for reversible population balance equations with size-dependent rates. Journal of Colloid and Interface Science, 246, 356-365.

Milliman, J. D., Troy, P. J., Balch, W. M., Adams, A. K., Li, Y.-H., & Mackenzie, F. T. (1999). Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Research Part I, 46, 1653-1669.

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., … Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681-686.

Payan, M. C., Verbinnen, B., Galan, B., Coz, A., Vandecasteele, C., & Viguri, J. R. (2012). Potential influence of CO2 release from a carbon capture storage site on release of trace metals from marine sediment. Environmental Pollution, 162, 29-39.

Reimers, C. E., Ruttenberg, K. C., Canfield, D. E., Christiansen, M. B., & Martin, J. B. (1996). Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 60(21), 4037-4057. https://doi.org/10.1016/S0016-7037(96)00231-1

Revsbech, N. P., Jørgensen, B. B., Cohen, Y., & Blackburn, T. H. (1983). Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnology and Oceanography, 28(6), 1062-1074. https://doi.org/10.4319/lo.1983.28.6.1062

Roth, P. H., & Berger, W. H. (1975). Distribution and dissolution of coccoliths in the south and Central Pacific (p. 13). Cushman Foundation for Foraminiferal Research.

Roth, P. H., Wise, S. W., Thierstein, H., (1975). Early chalk diagenesis and lithification. Sedimentological applications of paleontological approaches: Ninth Internat. Sediment. Cong., Nice, 7, 187-199.

Scheiner, F., Holcová, K., Milovský, R., Doláková, N., & Rigová, J. (2019). Response of benthic foraminiferal communities to changes in productivity and watermass conditions in the epicontinental Paratethys during the middle Miocene. Marine Micropaleontology, 151, 101750. https://doi.org/10.1016/j.marmicro.2019

Scheiner, F., Holcová, K., Milovský, R., & Kuhnert, H. (2018). Temperature and isotopic composition of seawater in the epicontinental sea (Central Paratethys) during the middle Miocene climate transition based on Mg/Ca, delta O-18 and delta C-13 from foraminiferal tests. Palaeogeography Palaeoclimatology Palaeoecology, 496, 60-71.

Silburn, B., Kröger, S., Parker, E. R., Sivyer, D. B., Hicks, N., Powell, C. F., Johnson, M., & Greenwood, N. (2017). Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability. Biogeochemistry, 135, 69-88. https://doi.org/10.1007/s10533-017-0323-z

Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., & Greenwood, J. (2007). The effect of biogeochemical processes on pH. Marine Chemistry, 105, 30-51. https://doi.org/10.1016/j.marchem.2006.12.012

Stahl, H., Glud, A., Schröder, C. R., Klimant, I., Tengberg, A., & Glud, R. N. (2006). Time-resolved pH imaging in marine sediments with a luminescent planar optode. Limnology and Oceanography: Methods, 4(10), 336-345. https://doi.org/10.4319/lom.2006.4.336

Stahl, H., Warnken, K. W., Sochaczewski, L., Glud, R. N., Davison, W., & Zhang, H. (2012). A combined sensor for simultaneous high resolution 2D imaging of oxygen and trace metals fluxes. Limnology and Oceanography: Methods, 10, 389-401.

Tankere-Muller, S., Zhang, H., Davison, W., Finke, N., Larsen, O., Stahl, H., & Glud, R. N. (2007). Fine scale remobilisation of Fe, Mn Co, Ni, Cu and Cd in contaminated marine sediment. Marine Chemistry, 106, 192-207. https://doi.org/10.1016/j.marchem.2006.04.005

Taylor, P., Lichtschlag, A., Toberman, M., Sayer, M. D. J., Reynolds, A., Sato, T., & Stahl, H. (2015). Impact and recovery of pH in marine sediments subject to a temporary carbon dioxide leak. 3. International Journal of Greenhouse Gas Control, 38, 93-101.

Thierstein, H. R. (1976). Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Marine Micropaleontology, 1, 325-362.

Thierstein, H. R. (1980). Selective dissolution of late cretaceous and earliest tertiary calcareous nannofossils: Experimental evidence. Cretaceous Research, 1(2), 165-176. https://doi.org/10.1016/0195-6671(80)90023-3

Wenzhöfer, F., Adler, M., Kohls, O., Hensen, C., Strotmann, B., Boehme, S., & Schulz, H. D. (2001). Calcite dissolution driven by benthic mineralization in the deep sea: In situ measurements of Ca2+, pH, pCO2, and O2. Geochimica et Cosmochimica Acta, 65, 2677-2690.

White, M. M., Waller, J. D., Lubelczyk, L. C., Drapeau, D. T., Bowler, B. C., Balch, W. M., & Fieldset, D. M. (2018). Coccolith dissolution within copepod guts affects fecal pellet density and sinking rate. Scientific Reports, 8, 9758. https://doi.org/10.1038/s41598-018-28073-x

Zamarreno, D. V., Inkpen, R., & May, E. (2009). Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Applied and Environmental Microbiology, 75, 5981-5990. https://doi.org/10.1128/AEM.02079-08

Zhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology, 4, 4. https://doi.org/10.3389/fbioe.2016.00004

Ziveri, P., Passaro, M., Incarbona, A., Milazzo, M., Rodolfo-Metalpa, R., & Hall-Spencer, J. M. (2014). Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO2 gradient. The Biological Bulletin, 226(3), 282-290.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...