Molecular Research of Lipid Peroxidation and Antioxidant Enzyme Activity of Comamonas testosteroni Bacterial Cells under the Hexachlorobenzene Impact
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36232717
PubMed Central
PMC9570277
DOI
10.3390/ijms231911415
PII: ijms231911415
Knihovny.cz E-zdroje
- Klíčová slova
- Schiff bases, catalase, diene and triene conjugates, hexachlorobenzene, malondialdehyde, peroxidase,
- MeSH
- antioxidancia MeSH
- chlorbenzeny MeSH
- Comamonas testosteroni * MeSH
- hexachlorbenzen * MeSH
- katalasa MeSH
- lidé MeSH
- lipidy MeSH
- malondialdehyd MeSH
- peroxidace lipidů MeSH
- půda MeSH
- Schiffovy báze MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- chlorbenzeny MeSH
- hexachlorbenzen * MeSH
- katalasa MeSH
- lipidy MeSH
- malondialdehyd MeSH
- půda MeSH
- Schiffovy báze MeSH
The species of Comamonas testosteroni is the most common human pathogen of the genus, which can be associated with acute appendicitis, infections of the bloodstream, the peritoneal cavity, cerebrospinal fluid, inflammatory bowel disease, and in general, bacteremia. According to the literature, Comamonas testosteroni has destructive activity to a wide range of toxic chemical compounds, including chlorobenzenes. The specified strains were isolated from the soil of the organochlorine waste landfill, where hexachlorobenzene (HCB) was predominant. These strains were expected to be capable of degrading HCB. Microbiological (bacterial enrichment and cultivating, bacterial biomass obtaining), molecular biology, biochemical (enzymatic activities, malondialdehyde measuring, peroxidation lipid products measuring), and statistical methods were carried out in this research. The reaction of both strains (UCM B-400 and UCM B-401) to the hexachlorobenzene presence differed in the content of diene and triene conjugates and malondialdehyde, as well as different catalase and peroxidase activity levels. In terms of primary peroxidation products, diene conjugates were lower, except conditions with 20 mg/L HCB, where these were higher up to two times, than the pure control. Malondialdehyde in strain B-400 cells decreased up to five times, in B-401, but increased up to two times, compared to the pure control. Schiff bases in strain B-400 cells were 2-3 times lower than the pure control. However, in B-401 cells Schiff bases under higher HCB dose were in the same level with the pure control. Catalase activity was 1.5 times higher in all experimental variants, compared to the pure control (in the strain B-401 cells), but in the B-400 strain, cells were 2 times lower, compared to the pure control. The response of the two strains to hexachlorobenzene was similar only in peroxidase activity terms, which was slightly higher compared to the pure control. The physiological response of Comamonas testosteroni strains to hexachlorobenzene has a typical strain reaction. The physiological response level of these strains to hexachlorobenzene confirms its tolerance, and indirectly, the ability to destroy the specified toxic compound.
Zobrazit více v PubMed
Lipuma J.J., Currie B.J., Peacock S.J., Vandamme P.A.R. Burkholderia, Stenotrophomonas, Ralstonia, Cupriavidus, Pandoraea, Brevundimonas, Comamonas, Delftia and Acidovorax. In: Jorgensen J.H., Carroll K.C., Funke G., Pfaller M.A., Landry M.L., Richter S.S., Warnock D.W., editors. Manual of Clinical Microbiology. ASM Press; Washington, DC, USA: 2015. pp. 791–812.
Tamaoka J., Ha D.-M., Komagata K. Reclassification of Pseudomonas Acidovorans Den Dooren de Jong 1926 and Pseudomonas Testosteroni Marcus and Talalay 1956 as Comamonas Acidovorans Comb. Nov. and Comamonas Testosteroni Comb. Nov., with an Emended Description of the Genus Comamonas. Int. J. Syst. Bacteriol. 1987;37:52–59. doi: 10.1099/00207713-37-1-52. DOI
Lu Q., Sun X., Jiang Z., Cui Y., Li X., Cui J. Effects of Comamonas Testosteroni on Dissipation of Polycyclic Aromatic Hydrocarbons and the Response of Endogenous Bacteria for Soil Bioremediation. Environ. Sci. Pollut. Res. Int. 2022 doi: 10.1007/s11356-022-21497-z. PubMed DOI
Vítková M., Dercová K., Molnárová J., Tóthová L., Polek B., Godočíková J. The Effect of Lignite and Comamonas Testosteroni on Pentachlorophenol Biodegradation and Soil Ecotoxicity. Water Air Soil Pollut. 2011;218:145–155. doi: 10.1007/s11270-010-0630-7. DOI
Nguyen O.T., Ha D.D. Degradation of Chlorotoluenes and Chlorobenzenes by the Dual-Species Biofilm of Comamonas Testosteroni Strain KT5 and Bacillus Subtilis Strain DKT. Ann. Microbiol. 2019;69:267–277. doi: 10.1007/s13213-018-1415-2. DOI
Ni B., Huang Z., Fan Z., Jiang C.-Y., Liu S.-J. Comamonas Testosteroni Uses a Chemoreceptor for Tricarboxylic Acid Cycle Intermediates to Trigger Chemotactic Responses towards Aromatic Compounds: New Mechanism for Chemotaxis towards Aromatic Compounds. Mol. Microbiol. 2013;90:813–823. doi: 10.1111/mmi.12400. PubMed DOI
Liu L., Jiang C.-Y., Liu X.-Y., Wu J.-F., Han J.-G., Liu S.-J. Plant-Microbe Association for Rhizoremediation of Chloronitroaromatic Pollutants with Comamonas Sp. Strain CNB-1. Environ. Microbiol. 2007;9:465–473. doi: 10.1111/j.1462-2920.2006.01163.x. PubMed DOI
Zhang C., Wang B., Dai X., Li S., Lu G., Zhou Y. Structure and Function of the Bacterial Communities during Rhizoremediation of Hexachlorobenzene in Constructed Wetlands. Environ. Sci. Pollut. Res. 2017;24:11483–11492. doi: 10.1007/s11356-017-8463-1. PubMed DOI
Tang Q., Lu T., Liu S.-J. Developing a Synthetic Biology Toolkit for Comamonas Testosteroni, an Emerging Cellular Chassis for Bioremediation. ACS Synth. Biol. 2018;7:1753–1762. doi: 10.1021/acssynbio.7b00430. PubMed DOI
Sun X., Li X., Cui Y., Jiang Z., Wang Q., Lu Q., Cui J. Interaction with Endogenous Microorganisms, Comamonas Testosteroni Enhanced the Degradation of Polycyclic Aromatic Hydrocarbon in Soil. Res. Sq. 2021:1–22. doi: 10.21203/rs.3.rs-307586/v1. DOI
Stockholm Convention on Persistent Organic Pollutants (POPs) Volume 2020. Secretariat of the Stockholm Convention (SSC); Stockholm, Sweden: 2002. [(accessed on 25 September 2022)]. Available online: https://www.state.gov/key-topics-office-of-environmental-quality-and-transboundary-issues/stockholm-convention-on-persistent-organic-pollutants.
Ashraf M.A. Persistent Organic Pollutants (POPs): A Global Issue, a Global Challenge. Environ. Sci. Pollut. Res. 2017;24:4223–4227. doi: 10.1007/s11356-015-5225-9. PubMed DOI
Cheng Z., Chen M., Xie L., Peng L., Yang M., Li M. Bioaugmentation of a Sequencing Batch Biofilm Reactor with Comamonas Testosteroni and Bacillus Cereus and Their Impact on Reactor Bacterial Communities. Biotechnol. Lett. 2015;37:367–373. doi: 10.1007/s10529-014-1684-1. PubMed DOI
Gabelish C.L. Isolation and Investigation of an Aerobic Hexachlorobenzene-Degrading Bacterium. UNSW; Sydney, Australia: 2002.
Gęgotek A., Skrzydlewska E. Biological Effect of Protein Modifications by Lipid Peroxidation Products. Chem. Phys. Lipids. 2019;221:46–52. doi: 10.1016/j.chemphyslip.2019.03.011. PubMed DOI
Altomare A., Baron G., Gianazza E., Banfi C., Carini M., Aldini G. Lipid Peroxidation Derived Reactive Carbonyl Species in Free and Conjugated Forms as an Index of Lipid Peroxidation: Limits and Perspectives. Redox Biol. 2021;42:101899. doi: 10.1016/j.redox.2021.101899. PubMed DOI PMC
Ayala A., Muñoz M.F., Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014;2014:360438. doi: 10.1155/2014/360438. PubMed DOI PMC
Prione L.P., Olchanheski L.R., Tullio L.D., Santo B.C.E., Reche P.M., Martins P.F., Carvalho G., Demiate I.M., Pileggi S.A.V., Dourado M.N., et al. GST Activity and Membrane Lipid Saturation Prevents Mesotrione-Induced Cellular Damage in Pantoea Ananatis. AMB Express. 2016;6:70. doi: 10.1186/s13568-016-0240-x. PubMed DOI PMC
Ogliari J., Freitas S.P., Ramos A.C., Bressan Smith R.E., Façanha A.R. Sistemas Primários de Transporte de Prótons Integram Os Mecanismos de Desintoxicação Do Mesotrione Em Plantas de Milho. Planta Daninha. 2009;27:799–807. doi: 10.1590/S0100-83582009000400018. DOI
Rodríguez-Vargas S., Sánchez-García A., Martínez-Rivas J.M., Prieto J.A., Randez-Gil F. Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces Cerevisiae to Freezing and Salt Stress. Appl. Environ. Microbiol. 2007;73:110–116. doi: 10.1128/AEM.01360-06. PubMed DOI PMC
Duc H.D. Degradation of Chlorotoluenes by Comamonas Testosterone KT5. Appl. Biol. Chem. 2017;60:457–465. doi: 10.1007/s13765-017-0299-3. DOI
Dimova M., Dankevych L., Yamborko N., Iutynska G. Polyphasic Taxonomy Analyse of Comamonas Testosteroni Resistant to Hexachlorobenzene. J. Microbiol. Biotechnol. Food Sci. 2022;11:e4711. doi: 10.55251/jmbfs.4711. DOI
Dimova M., Iutynska G. Fatty Acid Composition of Comamonas Testosteroni under Hexachlorobenzene Loading Conditions. Mikrobiol. Z. 2022;2022:3–14.
Cabiscol E., Tamarit J., Ros J. Oxidative Stress in Bacteria and Protein Damage by Reactive Oxygen Species. Int. Microbiol. 2000;3:3–8. PubMed
Olchanheski L.R., Dourado M.N., Beltrame F.L., Zielinski A.A.F., Demiate I.M., Pileggi S.A.V., Azevedo R.A., Sadowsky M.J., Pileggi M. Mechanisms of Tolerance and High Degradation Capacity of the Herbicide Mesotrione by Escherichia Coli Strain DH5-α. PLoS ONE. 2014;9:e99960. doi: 10.1371/journal.pone.0099960. PubMed DOI PMC
Kibinza S., Bazin J., Bailly C., Farrant J.M., Corbineau F., El-Maarouf-Bouteau H. Catalase Is a Key Enzyme in Seed Recovery from Ageing during Priming. Plant Sci. 2011;181:309–315. doi: 10.1016/j.plantsci.2011.06.003. PubMed DOI
Kabel A.M. Free Radicals and Antioxidants: Role of Enzymes and Nutrition. World J. Nutr. Health. 2014;2:35–38. doi: 10.12691/jnh-2-3-2. DOI
Murínová S., Dercová K. Response Mechanisms of Bacterial Degraders to Environmental Contaminants on the Level of Cell Walls and Cytoplasmic Membrane. Int. J. Microbiol. 2014;2014:873081. doi: 10.1155/2014/873081. PubMed DOI PMC
Balague C., Sturtz N., Duffard R., Evangelista de Duffard A.M. Effect of 2,4-Dichlorophenoxyacetic Acid Herbicide OnEscherichia Coli Growth, Chemical Composition, and Cellular Envelope. Environ. Toxicol. 2001;16:43–53. doi: 10.1002/1522-7278(2001)16:1<43::AID-TOX50>3.0.CO;2-R. PubMed DOI
Sánchez de Medina F., Romero-Calvo I., Mascaraque C., Martínez-Augustin O. Intestinal Inflammation and Mucosal Barrier Function: Inflamm. Bowel Dis. 2014;20:2394–2404. doi: 10.1097/MIB.0000000000000204. PubMed DOI
Halliwell B. Free Radicals and Antioxidants: Updating a Personal View. Nutr. Rev. 2012;70:257–265. doi: 10.1111/j.1753-4887.2012.00476.x. PubMed DOI
Lü Z., Sang L., Li Z., Min H. Catalase and Superoxide Dismutase Activities in a Stenotrophomonas Maltophilia WZ2 Resistant to Herbicide Pollution. Ecotoxicol. Environ. Saf. 2009;72:136–143. doi: 10.1016/j.ecoenv.2008.01.009. PubMed DOI
de Oliveira E.P., da Silva Rovida A.F., Martins J.G., Pileggi S.A.V., Schemczssen-Graeff Z., Pileggi M. Tolerance of Pseudomonas Strain to the 2,4-D Herbicide through a Peroxidase System. PLoS ONE. 2021;16:e0257263. doi: 10.1371/journal.pone.0257263. PubMed DOI PMC
Recknagel R.O., Glende E.A. Spectrophotometric Detection of Lipid Conjugated Dienes. Methods Enzym. 1984;105:331–337. doi: 10.1016/s0076-6879(84)05043-6. PubMed DOI
Ramishvili L., Zibzibadze M., Alibegashvili M., Chigogidze T., Gordeziani M., Gabunia N., Khazaradze A., Kotrikadze N. Some Criteria for the Evaluation of Endogenous Intoxication in Men with Prostate Tumours. JBPC. 2016;16:167–171. doi: 10.4024/18RA16A.jbpc.16.04. DOI
Barriuso B., Astiasarán I., Ansorena D. A Review of Analytical Methods Measuring Lipid Oxidation Status in Foods: A Challenging Task. Eur. Food Res. Technol. 2013;236:1–15. doi: 10.1007/s00217-012-1866-9. DOI
Hadwan M.H., Abed H.N. Data Supporting the Spectrophotometric Method for the Estimation of Catalase Activity. Data Brief. 2016;6:194–199. doi: 10.1016/j.dib.2015.12.012. PubMed DOI PMC
Bradford M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Thiyagarajan A. Optimization of Extracellular Peroxidsae Production from Coprinus sp. IJST. 2008;1:1–5. doi: 10.17485/ijst/2008/v1i7.6. DOI