Desmin Knock-Out Cardiomyopathy: A Heart on the Verge of Metabolic Crisis
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36233322
PubMed Central
PMC9570457
DOI
10.3390/ijms231912020
PII: ijms231912020
Knihovny.cz E-resources
- Keywords
- amino acid, cardiomyopathy, creatine kinase, desmin, desmin knock-out metabolism, desminopathy, fatty acid, glucose, mitochondria, mitochondriopathy,
- MeSH
- Amino Acids metabolism MeSH
- Citrates metabolism MeSH
- Desmin * genetics metabolism MeSH
- Glucose metabolism MeSH
- Hexokinase * genetics metabolism MeSH
- Cardiomyopathies * genetics metabolism MeSH
- Creatine Kinase, Mitochondrial Form metabolism MeSH
- Fatty Acids metabolism MeSH
- Myocardium metabolism MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Oxidative Phosphorylation MeSH
- Glucose Transporter Type 1 metabolism MeSH
- Proteomics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amino Acids MeSH
- Citrates MeSH
- Desmin * MeSH
- Glucose MeSH
- Hexokinase * MeSH
- Creatine Kinase, Mitochondrial Form MeSH
- Fatty Acids MeSH
- Glucose Transporter Type 1 MeSH
Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.
Chair of Aerospace Medicine Medical Faculty University of Cologne 50931 Cologne Germany
Department of Cell Biology Faculty of Science Charles University 128 00 Prague Czech Republic
Department of Neurology Istanbul Faculty of Medicine Istanbul University 34093 Istanbul Turkey
Department of Physiology Faculty of Science Charles University 128 00 Prague Czech Republic
Institute of Aerospace Medicine German Aerospace Center Linder Höhe 51147 Cologne Germany
Institute of Vegetative Physiology Medical Faculty University of Cologne 50931 Cologne Germany
Medical Proteome Analysis Center for Proteindiagnostics Ruhr University Bochum 44801 Bochum Germany
Medizinisches Proteom Center Medical Faculty Ruhr University Bochum 44801 Bochum Germany
See more in PubMed
Murphy E., Ardehali H., Balaban R.S., DiLisa F., Dorn G.W., 2nd, Kitsis R.N., Otsu K., Ping P., Rizzuto R., Sack M.N., et al. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement from the American Heart Association. Circ. Res. 2016;118:1960–1991. doi: 10.1161/RES.0000000000000104. PubMed DOI PMC
Karamanlidis G., Lee C.F., Garcia-Menendez L., Kolwicz S.C., Jr., Suthammarak W., Gong G., Sedensky M.M., Morgan P.G., Wang W., Tian R. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 2013;18:239–250. doi: 10.1016/j.cmet.2013.07.002. PubMed DOI PMC
Capetanaki Y. Desmin cytoskeleton: A potential regulator of muscle mitochondrial behavior and function. Trends Cardiovasc. Med. 2002;12:339–348. doi: 10.1016/S1050-1738(02)00184-6. PubMed DOI
Fountoulakis M., Soumaka E., Rapti K., Mavroidis M., Tsangaris G., Maris A., Weisleder N., Capetanaki Y. Alterations in the heart mitochondrial proteome in a desmin null heart failure model. J. Mol. Cell. Cardiol. 2005;38:461–474. doi: 10.1016/j.yjmcc.2004.12.008. PubMed DOI
Lindén M., Li Z., Paulin D., Gotow T., Leterrier J.F. Effects of desmin gene knockout on mice heart mitochondria. J. Bioenerg. Biomembr. 2001;33:333–341. doi: 10.1023/A:1010611408007. PubMed DOI
Dalakas M.C., Park K.Y., Semino-Mora C., Lee H.S., Sivakumar K., Goldfarb L.G. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N. Engl. J. Med. 2000;342:770–780. doi: 10.1056/NEJM200003163421104. PubMed DOI
Goldfarb L.G., Park K.Y., Cervenakova L., Gorokhova S., Lee H.S., Vasconcelos O., Nagle J.W., Semino-Mora C., Sivakumar K., Dalakas M.C. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat. Genet. 1998;19:402–403. doi: 10.1038/1300. PubMed DOI
Brodehl A., Gaertner-Rommel A., Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys. Rev. 2018;10:983–1006. doi: 10.1007/s12551-018-0429-0. PubMed DOI PMC
Clemen C.S., Herrmann H., Strelkov S.V., Schröder R. Desminopathies: Pathology and mechanisms. Acta Neuropathol. 2013;125:47–75. doi: 10.1007/s00401-012-1057-6. PubMed DOI PMC
Van Spaendonck-Zwarts K., van Hessem L., Jongbloed J.D., de Walle H.E., Capetanaki Y., van der Kooi A.J., van Langen I.M., van den Berg M.P., van Tintelen J.P. Desmin-related myopathy: A review and meta-analysis. Clin. Genet. 2010;80:354–366. doi: 10.1111/j.1399-0004.2010.01512.x. PubMed DOI
Clemen C.S., Stöckigt F., Strucksberg K.H., Chevessier F., Winter L., Schütz J., Bauer R., Thorweihe J.M., Wenzel D., Schlötzer-Schrehardt U., et al. The toxic effect of R350P mutant desmin in striated muscle of man and mouse. Acta Neuropathol. 2015;129:297–315. doi: 10.1007/s00401-014-1363-2. PubMed DOI PMC
Herrmann H., Cabet E., Chevalier N.R., Moosmann J., Schultheis D., Haas J., Schowalter M., Berwanger C., Weyerer V., Agaimy A., et al. Dual functional states of R406W-desmin assembly complexes cause cardiomyopathy with severe intercalated disc derangement in humans and in knock-in mice. Circulation. 2020;142:2155–2171. doi: 10.1161/CIRCULATIONAHA.120.050218. PubMed DOI
Carmignac V., Sharma S., Arbogast S., Fischer D., Serreri C., Serria M., Stoltenburg G., Maurage C.A., Herrmann H., Cuisset J.M., et al. A homozygous desmin deletion causes an Emery-Dreifuss like recessive myopathy with desmin depletion. Neuromuscul. Disord. 2009;19:600. doi: 10.1016/j.nmd.2009.06.179. DOI
Durmus H., Ayhan O., Cirak S., Deymeer F., Parman Y., Franke A., Eiber N., Chevessier F., Schlötzer-Schrehardt U., Clemen C.S., et al. Neuromuscular endplate pathology in recessive desminopathies: Lessons from man and mice. Neurology. 2016;87:799–805. doi: 10.1212/WNL.0000000000003004. PubMed DOI
Henderson M., de Waele L., Hudson J., Eagle M., Sewry C., Marsh J., Charlton R., He L., Blakely E.L., Horrocks I., et al. Recessive desmin-null muscular dystrophy with central nuclei and mitochondrial abnormalities. Acta Neuropathol. 2013;125:917–919. doi: 10.1007/s00401-013-1113-x. PubMed DOI
McLaughlin H.M., Kelly M.A., Hawley P.P., Darras B.T., Funke B., Picker J. Compound heterozygosity of predicted loss-of-function DES variants in a family with recessive desminopathy. BMC Med. Genet. 2013;14:68. doi: 10.1186/1471-2350-14-68. PubMed DOI PMC
Herrmann H., Hesse M., Reichenzeller M., Aebi U., Magin T.M. Functional complexity of intermediate filament cytoskeletons: From structure to assembly to gene ablation. Int. Rev. Cytol. 2003;223:83–175. PubMed
Capetanaki Y., Bloch R.J., Kouloumenta A., Mavroidis M., Psarras S. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp. Cell Res. 2007;313:2063–2076. doi: 10.1016/j.yexcr.2007.03.033. PubMed DOI
Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980;283:249–256. doi: 10.1038/283249a0. PubMed DOI
Li Z., Colucci-Guyon E., Pincon-Raymond M., Mericskay M., Pournin S., Paulin D., Babinet C. Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev. Biol. 1996;175:362–366. doi: 10.1006/dbio.1996.0122. PubMed DOI
Milner D.J., Weitzer G., Tran D., Bradley A., Capetanaki Y. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J. Cell Biol. 1996;134:1255–1270. doi: 10.1083/jcb.134.5.1255. PubMed DOI PMC
Paulin D., Li Z. Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle. Exp. Cell Res. 2004;301:1–7. doi: 10.1016/j.yexcr.2004.08.004. PubMed DOI
Diermeier S., Buttgereit A., Schürmann S., Winter L., Xu H., Murphy R.M., Clemen C.S., Schröder R., Friedrich O. Preaged remodeling of myofibrillar cytoarchitecture in skeletal muscle expressing R349P mutant desmin. Neurobiol. Aging. 2017;58:77–87. doi: 10.1016/j.neurobiolaging.2017.06.001. PubMed DOI
Diermeier S., Iberl J., Vetter K., Haug M., Pollmann C., Reischl B., Buttgereit A., Schürmann S., Spörrer M., Goldmann W.H., et al. Early signs of architectural and biomechanical failure in isolated myofibers and immortalized myoblasts from desmin-mutant knock-in mice. Sci. Rep. 2017;7:1391. doi: 10.1038/s41598-017-01485-x. PubMed DOI PMC
Haug M., Reischl B., Prölß G., Pollmann C., Buckert T., Keidel C., Schürmann S., Hock M., Rupitsch S., Heckel M., et al. The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials. Biosens. Bioelectron. 2018;102:589–599. doi: 10.1016/j.bios.2017.12.003. PubMed DOI
Pollmann C., Haug M., Reischl B., Prölß G., Pöschel T., Rupitsch S.J., Clemen C.S., Schröder R., Friedrich O. Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the MyoRobot Technology. Int. J. Mol. Sci. 2020;21:5501. doi: 10.3390/ijms21155501. PubMed DOI PMC
Eiber N., Frob F., Schowalter M., Thiel C., Clemen C.S., Schröder R., Hashemolhosseini S. Lack of Desmin in Mice Causes Structural and Functional Disorders of Neuromuscular Junctions. Front. Mol. Neurosci. 2020;13:567084. doi: 10.3389/fnmol.2020.567084. PubMed DOI PMC
Schröder R., Goudeau B., Simon M.C., Fischer D., Eggermann T., Clemen C.S., Li Z., Reimann J., Xue Z., Rudnik-Schöneborn S., et al. On noxious desmin: Functional effects of a novel heterozygous desmin insertion mutation on the extrasarcomeric desmin cytoskeleton and mitochondria. Hum. Mol. Genet. 2003;12:657–669. doi: 10.1093/hmg/ddg060. Erratum in Hum. Mol. Genet. 2007, 16, 2989–2990. PubMed DOI
Winter L., Unger A., Berwanger C., Spörrer M., Türk M., Chevessier F., Strucksberg K.H., Schlötzer-Schrehardt U., Wittig I., Goldmann W.H., et al. Imbalances in protein homeostasis caused by mutant desmin. Neuropathol. Appl. Neurobiol. 2019;45:476–494. doi: 10.1111/nan.12516. PubMed DOI
Winter L., Wittig I., Peeva V., Eggers B., Heidler J., Chevessier F., Kley R.A., Barkovits K., Strecker V., Berwanger C., et al. Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathol. 2016;132:453–473. doi: 10.1007/s00401-016-1592-7. PubMed DOI PMC
Milner D.J., Mavroidis M., Weisleder N., Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J. Cell Biol. 2000;150:1283–1298. doi: 10.1083/jcb.150.6.1283. PubMed DOI PMC
Meyer G.A., Kiss B., Ward S.R., Morgan D.L., Kellermayer M.S., Lieber R.L. Theoretical predictions of the effects of force transmission by desmin on intersarcomere dynamics. Biophys. J. 2010;98:258–266. doi: 10.1016/j.bpj.2009.10.014. PubMed DOI PMC
Shah S.B., Davis J., Weisleder N., Kostavassili I., McCulloch A.D., Ralston E., Capetanaki Y., Lieber R.L. Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys. J. 2004;86:2993–3008. doi: 10.1016/S0006-3495(04)74349-0. PubMed DOI PMC
Shah S.B., Su F.C., Jordan K., Milner D.J., Friden J., Capetanaki Y., Lieber R.L. Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle. Pt 3J. Exp. Biol. 2002;205:321–325. doi: 10.1242/jeb.205.3.321. PubMed DOI
Agbulut O., Li Z., Perie S., Ludosky M.A., Paulin D., Cartaud J., Butler-Browne G. Lack of desmin results in abortive muscle regeneration and modifications in synaptic structure. Cell. Motil. Cytoskelet. 2001;49:51–66. doi: 10.1002/cm.1020. PubMed DOI
Weisleder N., Taffet G.E., Capetanaki Y. Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc. Natl. Acad. Sci. USA. 2004;101:769–774. doi: 10.1073/pnas.0303202101. PubMed DOI PMC
Li Z., Mericskay M., Agbulut O., Butler-Browne G., Carlsson L., Thornell L.E., Babinet C., Paulin D. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J. Cell Biol. 1997;139:129–144. doi: 10.1083/jcb.139.1.129. PubMed DOI PMC
Waskova-Arnostova P., Elsnicova B., Kasparova D., Hornikova D., Kolar F., Novotny J., Zurmanova J. Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria. J. Appl. Physiol. 2015;119:1487–1493. doi: 10.1152/japplphysiol.01035.2014. PubMed DOI
Waskova-Arnostova P., Kasparova D., Elsnicova B., Novotny J., Neckar J., Kolar F., Zurmanova J. Chronic hypoxia enhances expression and activity of mitochondrial creatine kinase and hexokinase in the rat ventricular myocardium. Cell Physiol. Biochem. 2014;33:310–320. doi: 10.1159/000356671. PubMed DOI
Hornemann T., Stolz M., Wallimann T. Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH2-terminal lysine charge-clamps. J. Cell Biol. 2000;149:1225–1234. doi: 10.1083/jcb.149.6.1225. PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Leber Y., Ruparelia A.A., Kirfel G., van der Ven P.F., Hoffmann B., Merkel R., Bryson-Richardson R.J., Fürst D.O. Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Hum. Mol. Genet. 2016;25:2776–2788. doi: 10.1093/hmg/ddw135. PubMed DOI
Nilsson M.I., Nissar A.A., Al-Sajee D., Tarnopolsky M.A., Parise G., Lach B., Fürst D.O., van der Ven P.F.M., Kley R.A., Hawke T.J. Xin is a marker of skeletal muscle damage severity in myopathies. Am. J. Pathol. 2013;183:1703–1709. doi: 10.1016/j.ajpath.2013.08.010. PubMed DOI
Orfanos Z., Godderz M.P., Soroka E., Godderz T., Rumyantseva A., van der Ven P.F., Hawke T.J., Fürst D.O. Breaking sarcomeres by in vitro exercise. Sci. Rep. 2016;6:19614. doi: 10.1038/srep19614. PubMed DOI PMC
Molt S., Bührdel J.B., Yakovlev S., Schein P., Orfanos Z., Kirfel G., Winter L., Wiche G., van der Ven P.F., Rottbauer W., et al. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. Pt 16J. Cell Sci. 2014;127:3578–3592. doi: 10.1242/jcs.152157. PubMed DOI
Greenberg C.C., Connelly P.S., Daniels M.P., Horowits R. Krp1 (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes. Exp. Cell Res. 2008;314:1177–1191. doi: 10.1016/j.yexcr.2007.12.009. PubMed DOI PMC
Dhume A., Lu S., Horowits R. Targeted disruption of N-RAP gene function by RNA interference: A role for N-RAP in myofibril organization. Cell Motil. Cytoskelet. 2006;63:493–511. doi: 10.1002/cm.20141. PubMed DOI
Heckmann M.B., Bauer R., Jungmann A., Winter L., Rapti K., Strucksberg K.H., Clemen C.S., Li Z., Schröder R., Katus H.A., et al. AAV9-mediated gene transfer of desmin ameliorates cardiomyopathy in desmin-deficient mice. Gene Ther. 2016;23:673–679. doi: 10.1038/gt.2016.40. PubMed DOI PMC
Ruppert T., Heckmann M.B., Rapti K., Schultheis D., Jungmann A., Katus H.A., Winter L., Frey N., Clemen C.S., Schröder R., et al. AAV-mediated cardiac gene transfer of wild-type desmin in mouse models for recessive desminopathies. Gene Ther. 2020;27:516–524. doi: 10.1038/s41434-020-0147-7. PubMed DOI PMC
Weisleder N., Soumaka E., Abbasi S., Taegtmeyer H., Capetanaki Y. Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement. J. Mol. Cell. Cardiol. 2004;36:121–128. doi: 10.1016/j.yjmcc.2003.10.010. PubMed DOI
Carlsson L., Thornell L.E. Desmin-related myopathies in mice and man. Acta Physiol. Scand. 2001;171:341–348. doi: 10.1046/j.1365-201x.2001.00837.x. PubMed DOI
Kubanek M., Schimerova T., Piherova L., Brodehl A., Krebsova A., Ratnavadivel S., Stanasiuk C., Hansikova H., Zeman J., Palecek T., et al. Desminopathy: Novel Desmin Variants, a New Cardiac Phenotype, and Further Evidence for Secondary Mitochondrial Dysfunction. J. Clin. Med. 2020;9:937. doi: 10.3390/jcm9040937. PubMed DOI PMC
Winter L., Türk M., Harter P.N., Mittelbronn M., Kornblum C., Norwood F., Jungbluth H., Thiel C.T., Schlötzer-Schrehardt U., Schröder R. Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy. Acta Neuropathol. Commun. 2016;4:44. doi: 10.1186/s40478-016-0314-7. PubMed DOI PMC
Bolling M.C., Pas H.H., de Visser M., Aronica E., Pfendner E.G., van den Berg M.P., Diercks G.F., Suurmeijer A.J., Jonkman M.F. PLEC1 mutations underlie adult-onset dilated cardiomyopathy in epidermolysis bullosa simplex with muscular dystrophy. J. Investig. Dermatol. 2010;130:1178–1181. doi: 10.1038/jid.2009.390. PubMed DOI
Vicart P., Caron A., Guicheney P., Li Z., Prevost M.C., Faure A., Chateau D., Chapon F., Tome F., Dupret J.M., et al. A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet. 1998;20:92–95. doi: 10.1038/1765. PubMed DOI
Brodehl A., Gaertner-Rommel A., Klauke B., Grewe S.A., Schirmer I., Peterschröder A., Faber L., Vorgerd M., Gummert J., Anselmetti D., et al. The novel αB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Hum. Mutat. 2017;38:947–952. doi: 10.1002/humu.23248. PubMed DOI
Alam S., Abdullah C.S., Aishwarya R., Morshed M., Nitu S.S., Miriyala S., Panchatcharam M., Kevil C.G., Orr A.W., Bhuiyan M.S. Dysfunctional Mitochondrial Dynamic and Oxidative Phosphorylation Precedes Cardiac Dysfunction in R120G-αB-Crystallin-Induced Desmin-Related Cardiomyopathy. J. Am. Heart Assoc. 2020;9:e017195. doi: 10.1161/JAHA.120.017195. PubMed DOI PMC
Schröder R., Kunz W.S., Rouan F., Pfendner E., Tolksdorf K., Kappes-Horn K., Altenschmidt-Mehring M., Knoblich R., van der Ven P.F., Reimann J., et al. Disorganization of the desmin cytoskeleton and mitochondrial dysfunction in plectin-related epidermolysis bullosa simplex with muscular dystrophy. J. Neuropathol. Exp. Neurol. 2002;61:520–530. doi: 10.1093/jnen/61.6.520. PubMed DOI
Dayal A.A., Medvedeva N.V., Nekrasova T.M., Duhalin S.D., Surin A.K., Minin A.A. Desmin Interacts Directly with Mitochondria. Int. J. Mol. Sci. 2020;21:8122. doi: 10.3390/ijms21218122. PubMed DOI PMC
Winter L., Kuznetsov A.V., Grimm M., Zeold A., Fischer I., Wiche G. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle. Hum. Mol. Genet. 2015;24:4530–4544. doi: 10.1093/hmg/ddv184. PubMed DOI PMC
Kuznetsov A.V., Javadov S., Grimm M., Margreiter R., Ausserlechner M.J., Hagenbuchner J. Crosstalk between Mitochondria and Cytoskeleton in Cardiac Cells. Cells. 2020;9:222. doi: 10.3390/cells9010222. PubMed DOI PMC
Mado K., Chekulayev V., Shevchuk I., Puurand M., Tepp K., Kaambre T. On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am. J. Physiol. Cell Physiol. 2019;316:C657–C667. doi: 10.1152/ajpcell.00303.2018. PubMed DOI
Alam S., Abdullah C.S., Aishwarya R., Miriyala S., Panchatcharam M., Peretik J.M., Orr A.W., James J., Robbins J., Bhuiyan M.S. Aberrant Mitochondrial Fission Is Maladaptive in Desmin Mutation-Induced Cardiac Proteotoxicity. J. Am. Heart Assoc. 2018;7:e009289. doi: 10.1161/JAHA.118.009289. PubMed DOI PMC
Wei Y., Chiang W.C., Sumpter R., Jr., Mishra P., Levine B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 2017;168:224–238.e210. doi: 10.1016/j.cell.2016.11.042. PubMed DOI PMC
Thornell L., Carlsson L., Li Z., Mericskay M., Paulin D. Null mutation in the desmin gene gives rise to a cardiomyopathy. J. Mol. Cell. Cardiol. 1997;29:2107–2124. doi: 10.1006/jmcc.1997.0446. PubMed DOI
Lopaschuk G.D., Ussher J.R., Folmes C.D., Jaswal J.S., Stanley W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010;90:207–258. doi: 10.1152/physrev.00015.2009. PubMed DOI
Zaarour N., Berenguer M., le Marchand-Brustel Y., Govers R. Deciphering the role of GLUT4 N-glycosylation in adipocyte and muscle cell models. Biochem. J. 2012;445:265–273. doi: 10.1042/BJ20120232. PubMed DOI
Sadler J.B., Bryant N.J., Gould G.W., Welburn C.R. Posttranslational modifications of GLUT4 affect its subcellular localization and translocation. Int. J. Mol. Sci. 2013;14:9963–9978. doi: 10.3390/ijms14059963. PubMed DOI PMC
Shao D., Tian R. Glucose Transporters in Cardiac Metabolism and Hypertrophy. Compr. Physiol. 2015;6:331–351. doi: 10.1002/cphy.c150016. PubMed DOI PMC
Montessuit C., Thorburn A. Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. J. Biol. Chem. 1999;274:9006–9012. doi: 10.1074/jbc.274.13.9006. PubMed DOI
Quest A.F., Soldati T., Hemmer W., Perriard J.C., Eppenberger H.M., Wallimann T. Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneity in vivo. FEBS Lett. 1990;269:457–464. doi: 10.1016/0014-5793(90)81215-A. PubMed DOI
Zurmanova J., Difato F., Malacova D., Mejsnar J., Stefl B., Zahradnik I. Creatine kinase binds more firmly to the M-band of rabbit skeletal muscle myofibrils in the presence of its substrates. Mol. Cell. Biochem. 2007;305:55–61. doi: 10.1007/s11010-007-9527-1. PubMed DOI
Gregor M., Janovska A., Stefl B., Zurmanova J., Mejsnar J. Substrate channelling in a creatine kinase system of rat skeletal muscle under various pH conditions. Exp. Physiol. 2003;88:1–6. doi: 10.1113/eph8802441. PubMed DOI
Schlattner U., Tokarska-Schlattner M., Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim. Biophys. Acta. 2006;1762:164–180. doi: 10.1016/j.bbadis.2005.09.004. PubMed DOI
Hernando-Rodriguez B., Artal-Sanz M. Mitochondrial Quality Control Mechanisms and the PHB (Prohibitin) Complex. Cells. 2018;7:238. doi: 10.3390/cells7120238. PubMed DOI PMC
Merkwirth C., Langer T. Prohibitin function within mitochondria: Essential roles for cell proliferation and cristae morphogenesis. Biochim. Biophys. Acta. 2009;1793:27–32. doi: 10.1016/j.bbamcr.2008.05.013. PubMed DOI
Niederwieser A., Steinmann B., Exner U., Neuheiser F., Redweik U., Wang M., Rampini S., Wendel U. Multiple acyl-Co A dehydrogenation deficiency (MADD) in a boy with nonketotic hypoglycemia, hepatomegaly, muscle hypotonia and cardiomyopathy. Detection of N-isovalerylglutamic acid and its monoamide. Helv. Paediatr. Acta. 1983;38:9–26. PubMed
Singla M., Guzman G., Griffin A.J., Bharati S. Cardiomyopathy in multiple Acyl-CoA dehydrogenase deficiency: A clinico-pathological correlation and review of literature. Pediatr. Cardiol. 2008;29:446–451. doi: 10.1007/s00246-007-9119-6. PubMed DOI
Couce M.L., Sanchez-Pintos P., Diogo L., Leao-Teles E., Martins E., Santos H., Bueno M.A., Delgado-Pecellin C., Castineiras D.E., Cocho J.A., et al. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: Regional experience and high incidence of carnitine deficiency. Orphanet J. Rare Dis. 2013;8:102. doi: 10.1186/1750-1172-8-102. PubMed DOI PMC
Houten S.M., Denis S., Brinke H.T., Jongejan A., van Kampen A.H., Bradley E.J., Baas F., Hennekam R.C., Millington D.S., Young S.P., et al. Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia. Hum. Mol. Genet. 2014;23:5009–5016. doi: 10.1093/hmg/ddu218. PubMed DOI
Ranjbarvaziri S., Kooiker K.B., Ellenberger M., Fajardo G., Zhao M., Roest A.S.V., Woldeyes R.A., Koyano T.T., Fong R., Ma N., et al. Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation. 2021;144:1714–1731. doi: 10.1161/CIRCULATIONAHA.121.053575. PubMed DOI PMC
Koopman W.J., Willems P.H., Smeitink J.A. Monogenic mitochondrial disorders. N. Engl. J. Med. 2012;366:1132–1141. doi: 10.1056/NEJMra1012478. PubMed DOI
Rapti K., Diokmetzidou A., Kloukina I., Milner D.J., Varela A., Davos C.H., Capetanaki Y. Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model. Free Radic. Biol. Med. 2017;110:206–218. doi: 10.1016/j.freeradbiomed.2017.06.010. PubMed DOI
Diokmetzidou A., Soumaka E., Kloukina I., Tsikitis M., Makridakis M., Varela A., Davos C.H., Georgopoulos S., Anesti V., Vlahou A., et al. Desmin and αB-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J. Cell Sci. 2016;129:3705–3720. doi: 10.1242/jcs.192203. PubMed DOI PMC
Olsen R.K., Olpin S.E., Andresen B.S., Miedzybrodzka Z.H., Pourfarzam M., Merinero B., Frerman F.E., Beresford M.W., Dean J.C., Cornelius N., et al. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Pt 8Brain. 2007;130:2045–2054. doi: 10.1093/brain/awm135. PubMed DOI
Mosegaard S., Dipace G., Bross P., Carlsen J., Gregersen N., Olsen R.K.J. Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int. J. Mol. Sci. 2020;21:3847. doi: 10.3390/ijms21113847. PubMed DOI PMC
Gempel K., Topaloglu H., Talim B., Schneiderat P., Schoser B.G., Hans V.H., Palmafy B., Kale G., Tokatli A., Quinzii C., et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Pt 8Brain. 2007;130:2037–2044. doi: 10.1093/brain/awm054. PubMed DOI PMC
Liang W.C., Ohkuma A., Hayashi Y.K., Lopez L.C., Hirano M., Nonaka I., Noguchi S., Chen L.H., Jong Y.J., Nishino I. ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul. Disord. 2009;19:212–216. doi: 10.1016/j.nmd.2009.01.008. PubMed DOI PMC
Strnadová K.A., Holub M., Mühl A., Heinze G., Ratschmann R., Mascher H., Stöckler-Ipsiroglu S., Waldhauser F., Votava F., Lebl J., et al. Long-term stability of amino acids and acylcarnitines in dried blood spots. Clin. Chem. 2007;53:717–722. doi: 10.1373/clinchem.2006.076679. PubMed DOI
Neckar J., Svatonova A., Weissova R., Drahota Z., Zajickova P., Brabcova I., Kolar D., Alanova P., Vasinova J., Silhavy J., et al. Selective replacement of mitochondrial DNA increases the cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats. Clin. Sci. 2017;131:865–881. doi: 10.1042/CS20170083. PubMed DOI
Gnaiger E., Kuznetsov A.V. Mitochondrial respiration at low levels of oxygen and cytochrome c. Biochem. Soc. Trans. 2002;30:252–258. doi: 10.1042/bst0300252. PubMed DOI
Kuznetsov A.V., Schneeberger S., Seiler R., Brandacher G., Mark W., Steurer W., Saks V., Usson Y., Margreiter R., Gnaiger E. Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2004;286:H1633–H1641. doi: 10.1152/ajpheart.00701.2003. PubMed DOI
Kohutova J., Elsnicova B., Holzerova K., Neckar J., Sebesta O., Jezkova J., Vecka M., Vebr P., Hornikova D., Bacova B.S., et al. Anti-arrhythmic Cardiac Phenotype Elicited by Chronic Intermittent Hypoxia Is Associated with Alterations in Connexin-43 Expression, Phosphorylation, and Distribution. Front. Endocrinol. 2018;9:789. doi: 10.3389/fendo.2018.00789. PubMed DOI PMC
Manders E.M.M., Verbeek F.J., Aten J.A. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 1993;169:375–382. doi: 10.1111/j.1365-2818.1993.tb03313.x. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Zuiderveld K. Graphics Gems IV. Academic Press Professional, Inc.; Cambridge, MA, USA: 1994. Contrast limited adaptive histogram equalization; pp. 474–485.
Bankhead P. Analyzing Fluorescence Microscopy Images with ImageJ. Queen’s University Belfast; Belfast, UK: 2014.
Doube M., Klosowski M.M., Arganda-Carreras I., Cordelieres F.P., Dougherty R.P., Jackson J.S., Schmid B., Hutchinson J.R., Shefelbine S.J. BoneJ: Free and extensible bone image analysis in ImageJ. Bone. 2010;47:1076–1079. doi: 10.1016/j.bone.2010.08.023. PubMed DOI PMC
Schmid B., Tripal P., Fraaß T., Kersten C., Ruder B., Grüneboom A., Huisken J., Palmisano R. 3Dscript: Animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods. 2019;16:278–280. doi: 10.1038/s41592-019-0359-1. PubMed DOI
Zhao S., Fernald R.D. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 2005;12:1047–1064. doi: 10.1089/cmb.2005.12.1047. PubMed DOI PMC
Zsurka G., Baron M., Stewart J.D., Kornblum C., Bos M., Sassen R., Taylor R.W., Elger C.E., Chinnery P.F., Kunz W.S. Clonally expanded mitochondrial DNA mutations in epileptic individuals with mutated DNA polymerase gamma. J. Neuropathol. Exp. Neurol. 2008;67:857–866. doi: 10.1097/NEN.0b013e3181839b2d. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Oertzen-Hagemann V., Kirmse M., Eggers B., Pfeiffer K., Marcus K., de Marees M., Platen P. Effects of 12 Weeks of Hypertrophy Resistance Exercise Training Combined with Collagen Peptide Supplementation on the Skeletal Muscle Proteome in Recreationally Active Men. Nutrients. 2019;11:1072. doi: 10.3390/nu11051072. PubMed DOI PMC
Plum S., Helling S., Theiss C., Leite R.E.P., May C., Jacob-Filho W., Eisenacher M., Kuhlmann K., Meyer H.E., Riederer P., et al. Combined enrichment of neuromelanin granules and synaptosomes from human substantia nigra pars compacta tissue for proteomic analysis. J. Proteom. 2013;94:202–206. doi: 10.1016/j.jprot.2013.07.015. PubMed DOI PMC
Plum S., Eggers B., Helling S., Stepath M., Theiss C., Leite R.E.P., Molina M., Grinberg L.T., Riederer P., Gerlach M., et al. Proteomic Characterization of Synaptosomes from Human Substantia Nigra Indicates Altered Mitochondrial Translation in Parkinson’s Disease. Cells. 2020;9:2580. doi: 10.3390/cells9122580. PubMed DOI PMC
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
UniProt Consortum UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–D489. doi: 10.1093/nar/gkaa1100. PubMed DOI PMC
Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337–342. doi: 10.1038/nature10098. PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Huang D.W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. doi: 10.1093/nar/gkn923. PubMed DOI PMC