Corrosion Properties of Boron- and Manganese-Alloyed Stainless Steels as a Material for the Bipolar Plates of PEM Fuel Cells

. 2022 Sep 21 ; 15 (19) : . [epub] 20220921

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36233890

Grantová podpora
No. CZ.02.1.01/0.0/0.0/16_025/000741 European Regional Development Fund-Project

Stainless steels are materials that could be used for constructing not only the bearing parts of fuel cells but also the functional ones, particularly the bipolar plates. The advantage of stainless steel is its valuable electrical and thermal conductivity, reasonably low cost, excellent mechanical properties, and good formability. Paradoxically, the self-protection effect resulting from passivation turns into the main disadvantage, which is unacceptable interfacial contact resistance. The aim of this study was to test a number of possible stainless steels in a simulated fuel cell environment, especially those alloyed with boron and manganese, which were found to improve the contact resistance properties of stainless steels. The primary focus of the study is to determine the corrosion resistance of the individual materials tested. Electrochemical tests and contact resistance measurements were performed following the DOE requirements. Manganese-alloyed LDX stainless steel achieved the best results in the electrochemical tests; the worst were achieved by boron-containing steels. Boron-containing stainless steels suffered from localized corrosion resulting from chromium-rich boride formation. All steels tested exceeded the DOE limit in the contact resistance measurement, with 316L reaching the lowest values.

Zobrazit více v PubMed

Chang K.-Y. The optimal design for PEMFC modeling based on Taguchi method and genetic algorithm neural networks. Int. J. Hydrogen Energy. 2011;36:13683–13694. doi: 10.1016/j.ijhydene.2011.07.094. DOI

Yu Y., Shironita S., Mizukami T., Nakatsuyama K., Souma K., Umeda M. Corrosion-resistant characteristics of nitrided Ni-free stainless steel for bipolar plate of polymer electrolyte fuel cell. Int. J. Hydrogen Energy. 2017;42:6303–6309. doi: 10.1016/j.ijhydene.2017.01.211. DOI

Yang G., Yu S., Mo J., Kang Z., Dohrmann Y., List F.A., Green J.B., Babu S.S., Zhang F.-Y. Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production. J. Power Source. 2018;396:590–598. doi: 10.1016/j.jpowsour.2018.06.078. DOI

Wang X.-Z., Luo H., Luo J.-L. Effects of hydrogen and stress on the electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC environment. Electrochim. Acta. 2019;293:60–77. doi: 10.1016/j.electacta.2018.10.028. DOI

Ozen D.N., Timurkutluk B., Altinisik K. Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renew. Sustain. Energy Rev. 2016;59:1298–1306. doi: 10.1016/j.rser.2016.01.040. DOI

Ogungbemi E., Ijaodola O., Khatib F.N., Wilberforce T., El Hassan Z., Thompson J., Ramadan M., Olabi A.G. Fuel cell membranes—Pros and cons. Energy. 2019;172:155–172. doi: 10.1016/j.energy.2019.01.034. DOI

Antunes R.A., Oliveira M.C.L., Ett G., Ett V. Corrosion of metal bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen Energy. 2010;35:3632–3647. doi: 10.1016/j.ijhydene.2010.01.059. DOI

Boyacı San F.G., Okur O. The effect of compression molding parameters on the electrical and physical properties of polymer composite bipolar plates. Int. J. Hydrogen Energy. 2017;42:23054–23069. doi: 10.1016/j.ijhydene.2017.07.175. DOI

Wang J. System integration, durability and reliability of fuel cells: Challenges and solutions. Appl. Energy. 2017;189:460–479. doi: 10.1016/j.apenergy.2016.12.083. DOI

Branislav P., Tomáš B. Palivový článok—Zdroj energie. ATP J. 2007;7:83–84.

Alo O.A., Otunniyi I.O., Pienaar H., Iyuke S.E. Materials for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cell: Performance Criteria and Current Benchmarks. Procedia Manuf. 2017;7:395–401. doi: 10.1016/j.promfg.2016.12.011. DOI

Taherian R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. J. Power Source. 2014;265:370–390. doi: 10.1016/j.jpowsour.2014.04.081. DOI

Shimpalee S., Lilavivat V., McCrabb H., Khunatorn Y., Lee H.K., Lee W.K., Weidner J.W. Investigation of bipolar plate materials for proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2016;41:13688–13696. doi: 10.1016/j.ijhydene.2016.05.163. DOI

Asri N.F., Husaini T., Sulong A.B., Majlan E.H., Daud W.R.W. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int. J. Hydrogen Energy. 2017;42:9135–9148. doi: 10.1016/j.ijhydene.2016.06.241. DOI

Lee K.H., Jin C.K., Kang C.G., Seo H.Y., Kim J.D. Fabrication of Titanium Bipolar Plates by Rubber Forming Process and Evaluation Characteristics of TiN coated Titanium Bipolar Plates. Fuel Cells. 2015;15:170–177. doi: 10.1002/fuce.201400091. DOI

Zhang D., Duan L., Guo L., Wang Z., Zhao J., Tuan W.-H., Niihara K. TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating. Int. J. Hydrogen Energy. 2011;36:9155–9161. doi: 10.1016/j.ijhydene.2011.04.123. DOI

Gou Y., Chen H., Li R., Geng J., Shao Z. Nb–Cr–C coated titanium as bipolar plates for proton exchange membrane fuel cells. J. Power Source. 2022;520:230797. doi: 10.1016/j.jpowsour.2021.230797. DOI

Dong P., Li Z., Feng S., Wu Z., Cao Q., Li L., Chen Q., Han X. Fabrication of titanium bipolar plates for proton exchange membrane fuel cells by uniform pressure electromagnetic forming. Int. J. Hydrogen Energy. 2021;46:38768–38781. doi: 10.1016/j.ijhydene.2021.09.086. DOI

Wang J., Min L., Fang F., Zhang W., Wang Y. Electrodeposition of graphene nano-thick coating for highly enhanced performance of titanium bipolar plates in fuel cells. Int. J. Hydrogen Energy. 2019;44:16909–16917. doi: 10.1016/j.ijhydene.2019.04.245. DOI

Karimi S., Fraser N., Roberts B., Foulkes F.R. A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods. Adv. Mater. Sci. Eng. 2012;2012:828070. doi: 10.1155/2012/828070. DOI

Sadeghian Z., Hadidi M.R., Salehzadeh D., Nemati A. Hydrophobic octadecylamine-functionalized graphene/TiO2 hybrid coating for corrosion protection of copper bipolar plates in simulated proton exchange membrane fuel cell environment. Int. J. Hydrogen Energy. 2020;45:15380–15389. doi: 10.1016/j.ijhydene.2020.04.015. DOI

Hsieh S.-S., Huang C.-F., Feng C.-L. A novel design and micro-fabrication for copper (Cu) electroforming bipolar plates. Micron. 2008;39:263–268. doi: 10.1016/j.micron.2007.03.003. PubMed DOI

Nikam V.V., Reddy R.G. Copper alloy bipolar plates for polymer electrolyte membrane fuel cell. Electrochim. Acta. 2006;51:6338–6345. doi: 10.1016/j.electacta.2006.04.019. DOI

Feng K., Guo X., Li Z., Yao C., Wu Y. Investigation of multi-coating process treated magnesium alloy as bipolar plate in polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy. 2016;41:6020–6028. doi: 10.1016/j.ijhydene.2016.02.147. DOI

Hao W., Ma H., Sun G., Li Z. Developing high performance magnesium phosphate cement composite bipolar plates for fuel cells. Energy Procedia. 2019;158:1980–1985. doi: 10.1016/j.egypro.2019.01.456. DOI

Barranco J., Barreras F., Lozano A., Lopez A.M., Roda V., Martin J., Maza M., Fuentes G.G., Almandoz E. Cr and Zr/Cr nitride CAE-PVD coated aluminum bipolar plates for polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy. 2010;35:11489–11498. doi: 10.1016/j.ijhydene.2010.05.050. DOI

Bolouri A., Kang C.G. Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells. Renew. Energy. 2014;71:616–628. doi: 10.1016/j.renene.2014.06.021. DOI

Barranco J., Barreras F., Lozano A., Maza M. Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates. J. Power Source. 2011;196:4283–4289. doi: 10.1016/j.jpowsour.2010.11.069. DOI

Hou K.-H., Lin C.-H., Ger M.-D., Shiah S.-W., Chou H.-M. Analysis of the Corrosion Behavior of Al Alloy Bipolar Plate for Proton Exchange Membrane Fuel Cell (PEMFC) Under Operating Thermal Conditions. Int. J. Green Energy. 2012;9:71–83. doi: 10.1080/15435075.2011.621474. DOI

Mele C., Bozzini B. Localised corrosion processes of austenitic stainless steel bipolar plates for polymer electrolyte membrane fuel cells. J. Power Source. 2010;195:3590–3596. doi: 10.1016/j.jpowsour.2009.11.144. DOI

Yuan X.Z., Wang H., Zhang J., Wilkinson D.P. Bipolar plates for PEM fuel cells—From materials to processing. J. New Mater. Electrochem. Syst. 2005;8:257–267.

Lee S.-J., Huang C.-H., Lai J.-J., Chen Y.-P. Corrosion-resistant component for PEM fuel cells. J. Power Source. 2004;131:162–168. doi: 10.1016/j.jpowsour.2004.01.008. DOI

Yi P., Zhang D., Qiu D., Peng L., Lai X. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2019;44:6813–6843. doi: 10.1016/j.ijhydene.2019.01.176. DOI

Lin K., Li X., Dong H., Du S., Lu Y., Ji X., Gu D. Surface modification of 316 stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2017;42:2338–2348. doi: 10.1016/j.ijhydene.2016.09.220. DOI

Pugal Mani S., Srinivasan A., Rajendran N. Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC) Int. J. Hydrogen Energy. 2015;40:3359–3369. doi: 10.1016/j.ijhydene.2014.12.108. DOI

Wang Y., Zhang S., Lu Z., Wang L., Li W. Preparation and performances of electrically conductive Nb-doped TiO2 coatings for 316 stainless steel bipolar plates of proton-exchange membrane fuel cells. Corros. Sci. 2018;142:249–257. doi: 10.1016/j.corsci.2018.07.034. PubMed DOI PMC

Dundar F., Dur E., Mahabunphachai S., Koç M. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates. J. Power Source. 2010;195:3546–3552. doi: 10.1016/j.jpowsour.2009.12.040. DOI

Huang P., Chen Z., Zhang J., Wu M., Liu Y., Zhang F., Chen Y., Chen X. Stainless steel bipolar plate fuel cell with different flow field structures prepared by laser additive manufacturing. Int. J. Heat Mass Transf. 2022;183:122186. doi: 10.1016/j.ijheatmasstransfer.2021.122186. DOI

Sánchez-Molina M., Amores E., Rojas N., Kunowsky M. Additive manufacturing of bipolar plates for hydrogen production in proton exchange membrane water electrolysis cells. Int. J. Hydrogen Energy. 2021;46:38983–38991. doi: 10.1016/j.ijhydene.2021.09.152. DOI

Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998;243:231–236. doi: 10.1016/S0921-5093(97)00806-X. DOI

Mouritz A.P. Introduction to Aerospace Materials. In: Mouritz A.P., editor. Introduction to Aerospace Materials. Woodhead Publishing; Sawston, UK: 2012. pp. 202–223. DOI

Oyj O. Handbook of Stainless Steel. Outokumpu Oyj; Helsinki, Finland: 2017. pp. 45–53.

Feng K., Wu G., Li Z., Cai X., Chu P.K. Corrosion behavior of SS316L in simulated and accelerated PEMFC environments. Int. J. Hydrogen Energy. 2011;36:13032–13042. doi: 10.1016/j.ijhydene.2011.07.058. DOI

Li D.G., Wang J.D., Chen D.R., Liang P. Molybdenum addition enhancing the corrosion behaviors of 316 L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell. Int. J. Hydrogen Energy. 2015;40:5947–5957. doi: 10.1016/j.ijhydene.2015.01.165. DOI

Miyazawa A., Tada E., Nishikata A. Influence of corrosion of SS316L bipolar plate on PEFC performance. J. Power Source. 2013;231:226–233. doi: 10.1016/j.jpowsour.2012.12.088. DOI

Bozec N.L., Comepre C., L’Her M., Laouenan A., Costa D., Marcus P. Infuence of stainless steel surface treatment on the oxygen reduction reaction in seawater. Corros. Sci. 2001;43:765–786. doi: 10.1016/S0010-938X(00)00113-X. DOI

Dadfar M., Salehi M., Golozar M.A., Trasatti S., Casaletto M.P. Surface and corrosion properties of modified passive layer on 304 stainless steel as bipolar plates for PEMFCs. Int. J. Hydrogen Energy. 2017;42:25869–25876. doi: 10.1016/j.ijhydene.2017.08.169. DOI

Dadfar M., Salehi M., Golozar M.A., Trasatti S. Surface modification of 304 stainless steels to improve corrosion behavior and interfacial contact resistance of bipolar plates. Int. J. Hydrogen Energy. 2016;41:21375–21384. doi: 10.1016/j.ijhydene.2016.09.149. DOI

Kumagai M., Myung S.-T., Katada Y., Yashiro H. Stability of type 310S stainless steel bipolar plates tested at various current densities in proton exchange membrane fuel cells. Electrochim. Acta. 2016;211:754–760. doi: 10.1016/j.electacta.2016.06.106. DOI

Jinlong L., Zhuqing W., Tongxiang L., Ken S., Hideo M. Enhancing the corrosion resistance of the 2205 duplex stainless steel bipolar plates in PEMFCs environment by surface enriched molybdenum. Results Phys. 2017;7:3459–3464. doi: 10.1016/j.rinp.2017.09.001. DOI

Wang J., Sun J., Li S., Wen Z., Ji S. Surface diffusion modification AISI 304SS stainless steel as bipolar plate material for proton exchange membrane fuel cell. Int. J. Hydrogen Energy. 2012;37:1140–1144. doi: 10.1016/j.ijhydene.2011.02.072. DOI

Davies D.P., Adcock P.L., Turpin M., Rowen S.J. Stainless steel as a bipolar plate material for solid polymer fuel cells. J. Power Source. 2000;86:237–242. doi: 10.1016/S0378-7753(99)00524-8. DOI

Kumagai M., Myung S.-T., Kuwata S., Asaishi R., Yashiro H. Corrosion behavior of austenitic stainless steels as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells. Electrochim. Acta. 2008;53:4205–4212. doi: 10.1016/j.electacta.2007.12.078. DOI

Zhou Y., Engelberg D.L. Application of bipolar electrochemistry to assess the ambient temperature corrosion resistance of solution annealed type 2205 duplex stainless steel. Mater. Chem. Phys. 2022;275:125183. doi: 10.1016/j.matchemphys.2021.125183. DOI

Weil K.S., Kim J.Y., Xia G., Coleman J., Yang Z.G. Boronization of nickel and nickel clad materials for potential use in polymer electrolyte membrane fuel cells. Surf. Coat. Technol. 2006;201:4436–4441. doi: 10.1016/j.surfcoat.2006.08.039. DOI

Williams W.S. Transition-metal carbides. Prog. Solid State Chem. 1971;6:57–118. doi: 10.1016/0079-6786(71)90028-8. DOI

Iversen A.K. Stainless steels in bipolar plates—Surface resistive properties of corrosion resistant steel grades during current loads. Corros. Sci. 2006;48:1036–1058. doi: 10.1016/j.corsci.2005.05.012. DOI

Hinds G., Brightman E. Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates. Int. J. Hydrogen Energy. 2015;40:2785–2791. doi: 10.1016/j.ijhydene.2014.12.085. DOI

Office of Energy Efficiency & Renewable Energy. DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. [(accessed on 20 March 2021)];2019 Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components.

Yang Y., Guo L.-j., Liu H. Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities. Int. J. Hydrogen Energy. 2011;36:1654–1663. doi: 10.1016/j.ijhydene.2010.10.067. DOI

Yoon W., Huang X., Fazzino P., Reifsnider K.L., Akkaoui M.A. Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells. J. Power Source. 2008;179:265–273. doi: 10.1016/j.jpowsour.2007.12.034. DOI

Stoulil J., Hemmer V., Šefl V., Bystrianský J. Corrosion resistance of new powder metallurgy boron-containing stainless steel in the nuclear repository environment. Mater. Corros. 2015;66:342–346. doi: 10.1002/maco.201307468. DOI

Yamada K., Ohtani H., Hasebe M. Thermodynamic Analysis of the Fe-Cr-B Ternary System. High Temp. Mater. Processes. 2008;27:269–284. doi: 10.1515/HTMP.2008.27.4.269. DOI

Wang H., Wang T. A comparative study of high boron alloys with 2.0 wt% B based on 304 and 316 stainless steels. Mater. Lett. 2021;285:129035. doi: 10.1016/j.matlet.2020.129035. DOI

Serafini F.L., Peruzzo M., Krindges I., Ordoñez M.F.C., Rodrigues D., Souza R.M., Farias M.C.M. Microstructure and mechanical behavior of 316L liquid phase sintered stainless steel with boron addition. Mater. Charact. 2019;152:253–264. doi: 10.1016/j.matchar.2019.04.009. DOI

Loria E.A., Isaacs H.S. Type 304 Stainless Steel With 0.5% Boron for Storage of Spent Nuclear Fuel. JOM. 1980;32:10–17. doi: 10.1007/BF03354517. DOI

Szewczyk-Nykiel A. The effect of the addition of boron on the densification, microstructure and properties of sintered 17-4 ph stainless steel. Tech. Trans. 2014;2-M:85–96.

Papadias D.D., Ahluwalia R.K., Thomson J.K., Meyer H.M., Brady M.P., Wang H., Turner J.A., Mukundan R., Borup R. Degradation of SS316L bipolar plates in simulated fuel cell environment: Corrosion rate, barrier film formation kinetics and contact resistance. J. Power Source. 2015;273:1237–1249. doi: 10.1016/j.jpowsour.2014.02.053. DOI

Feng K., Shen Y., Mai J., Liu D., Cai X. An investigation into nickel implanted 316L stainless steel as a bipolar plate for PEM fuel cell. J. Power Source. 2008;182:145–152. doi: 10.1016/j.jpowsour.2008.03.088. DOI

Feng K., Shen Y., Liu D., Chu P.K., Cai X. Ni–Cr Co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy. 2010;35:690–700. doi: 10.1016/j.ijhydene.2009.10.106. DOI

Jeon W.S., Kim J.G., Kim Y.J., Han J.G. Electrochemical properties of TiN coatings on 316L stainless steel separator for polymer electrolyte membrane fuel cell. Thin Solid Film. 2008;516:3669–3672. doi: 10.1016/j.tsf.2007.08.086. DOI

Wind J., Späh R., Kaiser W., Böhm G. Metallic bipolar plates for PEM fuel cells. J. Power Source. 2002;105:256–260. doi: 10.1016/S0378-7753(01)00950-8. DOI

Vladimír Č. Korozivzdorné Oceli a Slitiny. Academia; Prague, Czech Republic: 1999.

Fremunt P., Podrábksý T. Konstrukční Oceli. Akademické Nakladatelství CERM; Brno, Czech Republic: 1996.

Richards J., Cremers C., Fischer P., Schmidt K. Corrosion Studies on Electro Polished Stainless Steels for the Use as Metallic Bipolar Plates in PEMFC Applications. Energy Procedia. 2012;20:324–333. doi: 10.1016/j.egypro.2012.03.032. DOI

Yun Y.-H. Deposition of gold–titanium and gold–nickel coatings on electropolished 316L stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2010;35:1713–1718. doi: 10.1016/j.ijhydene.2009.12.036. DOI

Yang M., Zhang D. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. Energy. 2014;64:242–247. doi: 10.1016/j.energy.2013.10.080. DOI

Olsson C.O.A., Landolt D. Film Growth during Anodic Polarization in the Passive Region on 304 Stainless Steels with Cr, Mo, or W Additions Studied with EQCM and XPS. J. Electrochem. Soc. 2001;148:B438. doi: 10.1149/1.1404969. DOI

Kim J.S., Peelen W.H.A., Hemmes K., Makkus R.C. Effect of alloying elements on the contact resistance and the passivation behaviour of stainless steels. Corros. Sci. 2002;44:635–655. doi: 10.1016/S0010-938X(01)00107-X. DOI

Schoeler A.C., Kaun T.D., Krumpelt M. Corrosion behavior of coated steels and Mn- and Co-alloyed steels for separator materials on the cathode side in molten carbonate fuel cells. Mater. Corros. Werkstof. Korros. 2000;51:797–807. doi: 10.1002/1521-4176(200011)51:11<797::AID-MACO797>3.0.CO;2-E. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...