Corrosion Properties of Boron- and Manganese-Alloyed Stainless Steels as a Material for the Bipolar Plates of PEM Fuel Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. CZ.02.1.01/0.0/0.0/16_025/000741
European Regional Development Fund-Project
PubMed
36233890
PubMed Central
PMC9572255
DOI
10.3390/ma15196557
PII: ma15196557
Knihovny.cz E-zdroje
- Klíčová slova
- bipolar plates, corrosion, stainless steels,
- Publikační typ
- časopisecké články MeSH
Stainless steels are materials that could be used for constructing not only the bearing parts of fuel cells but also the functional ones, particularly the bipolar plates. The advantage of stainless steel is its valuable electrical and thermal conductivity, reasonably low cost, excellent mechanical properties, and good formability. Paradoxically, the self-protection effect resulting from passivation turns into the main disadvantage, which is unacceptable interfacial contact resistance. The aim of this study was to test a number of possible stainless steels in a simulated fuel cell environment, especially those alloyed with boron and manganese, which were found to improve the contact resistance properties of stainless steels. The primary focus of the study is to determine the corrosion resistance of the individual materials tested. Electrochemical tests and contact resistance measurements were performed following the DOE requirements. Manganese-alloyed LDX stainless steel achieved the best results in the electrochemical tests; the worst were achieved by boron-containing steels. Boron-containing stainless steels suffered from localized corrosion resulting from chromium-rich boride formation. All steels tested exceeded the DOE limit in the contact resistance measurement, with 316L reaching the lowest values.
Zobrazit více v PubMed
Chang K.-Y. The optimal design for PEMFC modeling based on Taguchi method and genetic algorithm neural networks. Int. J. Hydrogen Energy. 2011;36:13683–13694. doi: 10.1016/j.ijhydene.2011.07.094. DOI
Yu Y., Shironita S., Mizukami T., Nakatsuyama K., Souma K., Umeda M. Corrosion-resistant characteristics of nitrided Ni-free stainless steel for bipolar plate of polymer electrolyte fuel cell. Int. J. Hydrogen Energy. 2017;42:6303–6309. doi: 10.1016/j.ijhydene.2017.01.211. DOI
Yang G., Yu S., Mo J., Kang Z., Dohrmann Y., List F.A., Green J.B., Babu S.S., Zhang F.-Y. Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production. J. Power Source. 2018;396:590–598. doi: 10.1016/j.jpowsour.2018.06.078. DOI
Wang X.-Z., Luo H., Luo J.-L. Effects of hydrogen and stress on the electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC environment. Electrochim. Acta. 2019;293:60–77. doi: 10.1016/j.electacta.2018.10.028. DOI
Ozen D.N., Timurkutluk B., Altinisik K. Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renew. Sustain. Energy Rev. 2016;59:1298–1306. doi: 10.1016/j.rser.2016.01.040. DOI
Ogungbemi E., Ijaodola O., Khatib F.N., Wilberforce T., El Hassan Z., Thompson J., Ramadan M., Olabi A.G. Fuel cell membranes—Pros and cons. Energy. 2019;172:155–172. doi: 10.1016/j.energy.2019.01.034. DOI
Antunes R.A., Oliveira M.C.L., Ett G., Ett V. Corrosion of metal bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen Energy. 2010;35:3632–3647. doi: 10.1016/j.ijhydene.2010.01.059. DOI
Boyacı San F.G., Okur O. The effect of compression molding parameters on the electrical and physical properties of polymer composite bipolar plates. Int. J. Hydrogen Energy. 2017;42:23054–23069. doi: 10.1016/j.ijhydene.2017.07.175. DOI
Wang J. System integration, durability and reliability of fuel cells: Challenges and solutions. Appl. Energy. 2017;189:460–479. doi: 10.1016/j.apenergy.2016.12.083. DOI
Branislav P., Tomáš B. Palivový článok—Zdroj energie. ATP J. 2007;7:83–84.
Alo O.A., Otunniyi I.O., Pienaar H., Iyuke S.E. Materials for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cell: Performance Criteria and Current Benchmarks. Procedia Manuf. 2017;7:395–401. doi: 10.1016/j.promfg.2016.12.011. DOI
Taherian R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. J. Power Source. 2014;265:370–390. doi: 10.1016/j.jpowsour.2014.04.081. DOI
Shimpalee S., Lilavivat V., McCrabb H., Khunatorn Y., Lee H.K., Lee W.K., Weidner J.W. Investigation of bipolar plate materials for proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2016;41:13688–13696. doi: 10.1016/j.ijhydene.2016.05.163. DOI
Asri N.F., Husaini T., Sulong A.B., Majlan E.H., Daud W.R.W. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int. J. Hydrogen Energy. 2017;42:9135–9148. doi: 10.1016/j.ijhydene.2016.06.241. DOI
Lee K.H., Jin C.K., Kang C.G., Seo H.Y., Kim J.D. Fabrication of Titanium Bipolar Plates by Rubber Forming Process and Evaluation Characteristics of TiN coated Titanium Bipolar Plates. Fuel Cells. 2015;15:170–177. doi: 10.1002/fuce.201400091. DOI
Zhang D., Duan L., Guo L., Wang Z., Zhao J., Tuan W.-H., Niihara K. TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating. Int. J. Hydrogen Energy. 2011;36:9155–9161. doi: 10.1016/j.ijhydene.2011.04.123. DOI
Gou Y., Chen H., Li R., Geng J., Shao Z. Nb–Cr–C coated titanium as bipolar plates for proton exchange membrane fuel cells. J. Power Source. 2022;520:230797. doi: 10.1016/j.jpowsour.2021.230797. DOI
Dong P., Li Z., Feng S., Wu Z., Cao Q., Li L., Chen Q., Han X. Fabrication of titanium bipolar plates for proton exchange membrane fuel cells by uniform pressure electromagnetic forming. Int. J. Hydrogen Energy. 2021;46:38768–38781. doi: 10.1016/j.ijhydene.2021.09.086. DOI
Wang J., Min L., Fang F., Zhang W., Wang Y. Electrodeposition of graphene nano-thick coating for highly enhanced performance of titanium bipolar plates in fuel cells. Int. J. Hydrogen Energy. 2019;44:16909–16917. doi: 10.1016/j.ijhydene.2019.04.245. DOI
Karimi S., Fraser N., Roberts B., Foulkes F.R. A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods. Adv. Mater. Sci. Eng. 2012;2012:828070. doi: 10.1155/2012/828070. DOI
Sadeghian Z., Hadidi M.R., Salehzadeh D., Nemati A. Hydrophobic octadecylamine-functionalized graphene/TiO2 hybrid coating for corrosion protection of copper bipolar plates in simulated proton exchange membrane fuel cell environment. Int. J. Hydrogen Energy. 2020;45:15380–15389. doi: 10.1016/j.ijhydene.2020.04.015. DOI
Hsieh S.-S., Huang C.-F., Feng C.-L. A novel design and micro-fabrication for copper (Cu) electroforming bipolar plates. Micron. 2008;39:263–268. doi: 10.1016/j.micron.2007.03.003. PubMed DOI
Nikam V.V., Reddy R.G. Copper alloy bipolar plates for polymer electrolyte membrane fuel cell. Electrochim. Acta. 2006;51:6338–6345. doi: 10.1016/j.electacta.2006.04.019. DOI
Feng K., Guo X., Li Z., Yao C., Wu Y. Investigation of multi-coating process treated magnesium alloy as bipolar plate in polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy. 2016;41:6020–6028. doi: 10.1016/j.ijhydene.2016.02.147. DOI
Hao W., Ma H., Sun G., Li Z. Developing high performance magnesium phosphate cement composite bipolar plates for fuel cells. Energy Procedia. 2019;158:1980–1985. doi: 10.1016/j.egypro.2019.01.456. DOI
Barranco J., Barreras F., Lozano A., Lopez A.M., Roda V., Martin J., Maza M., Fuentes G.G., Almandoz E. Cr and Zr/Cr nitride CAE-PVD coated aluminum bipolar plates for polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy. 2010;35:11489–11498. doi: 10.1016/j.ijhydene.2010.05.050. DOI
Bolouri A., Kang C.G. Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells. Renew. Energy. 2014;71:616–628. doi: 10.1016/j.renene.2014.06.021. DOI
Barranco J., Barreras F., Lozano A., Maza M. Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates. J. Power Source. 2011;196:4283–4289. doi: 10.1016/j.jpowsour.2010.11.069. DOI
Hou K.-H., Lin C.-H., Ger M.-D., Shiah S.-W., Chou H.-M. Analysis of the Corrosion Behavior of Al Alloy Bipolar Plate for Proton Exchange Membrane Fuel Cell (PEMFC) Under Operating Thermal Conditions. Int. J. Green Energy. 2012;9:71–83. doi: 10.1080/15435075.2011.621474. DOI
Mele C., Bozzini B. Localised corrosion processes of austenitic stainless steel bipolar plates for polymer electrolyte membrane fuel cells. J. Power Source. 2010;195:3590–3596. doi: 10.1016/j.jpowsour.2009.11.144. DOI
Yuan X.Z., Wang H., Zhang J., Wilkinson D.P. Bipolar plates for PEM fuel cells—From materials to processing. J. New Mater. Electrochem. Syst. 2005;8:257–267.
Lee S.-J., Huang C.-H., Lai J.-J., Chen Y.-P. Corrosion-resistant component for PEM fuel cells. J. Power Source. 2004;131:162–168. doi: 10.1016/j.jpowsour.2004.01.008. DOI
Yi P., Zhang D., Qiu D., Peng L., Lai X. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2019;44:6813–6843. doi: 10.1016/j.ijhydene.2019.01.176. DOI
Lin K., Li X., Dong H., Du S., Lu Y., Ji X., Gu D. Surface modification of 316 stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2017;42:2338–2348. doi: 10.1016/j.ijhydene.2016.09.220. DOI
Pugal Mani S., Srinivasan A., Rajendran N. Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC) Int. J. Hydrogen Energy. 2015;40:3359–3369. doi: 10.1016/j.ijhydene.2014.12.108. DOI
Wang Y., Zhang S., Lu Z., Wang L., Li W. Preparation and performances of electrically conductive Nb-doped TiO2 coatings for 316 stainless steel bipolar plates of proton-exchange membrane fuel cells. Corros. Sci. 2018;142:249–257. doi: 10.1016/j.corsci.2018.07.034. PubMed DOI PMC
Dundar F., Dur E., Mahabunphachai S., Koç M. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates. J. Power Source. 2010;195:3546–3552. doi: 10.1016/j.jpowsour.2009.12.040. DOI
Huang P., Chen Z., Zhang J., Wu M., Liu Y., Zhang F., Chen Y., Chen X. Stainless steel bipolar plate fuel cell with different flow field structures prepared by laser additive manufacturing. Int. J. Heat Mass Transf. 2022;183:122186. doi: 10.1016/j.ijheatmasstransfer.2021.122186. DOI
Sánchez-Molina M., Amores E., Rojas N., Kunowsky M. Additive manufacturing of bipolar plates for hydrogen production in proton exchange membrane water electrolysis cells. Int. J. Hydrogen Energy. 2021;46:38983–38991. doi: 10.1016/j.ijhydene.2021.09.152. DOI
Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998;243:231–236. doi: 10.1016/S0921-5093(97)00806-X. DOI
Mouritz A.P. Introduction to Aerospace Materials. In: Mouritz A.P., editor. Introduction to Aerospace Materials. Woodhead Publishing; Sawston, UK: 2012. pp. 202–223. DOI
Oyj O. Handbook of Stainless Steel. Outokumpu Oyj; Helsinki, Finland: 2017. pp. 45–53.
Feng K., Wu G., Li Z., Cai X., Chu P.K. Corrosion behavior of SS316L in simulated and accelerated PEMFC environments. Int. J. Hydrogen Energy. 2011;36:13032–13042. doi: 10.1016/j.ijhydene.2011.07.058. DOI
Li D.G., Wang J.D., Chen D.R., Liang P. Molybdenum addition enhancing the corrosion behaviors of 316 L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell. Int. J. Hydrogen Energy. 2015;40:5947–5957. doi: 10.1016/j.ijhydene.2015.01.165. DOI
Miyazawa A., Tada E., Nishikata A. Influence of corrosion of SS316L bipolar plate on PEFC performance. J. Power Source. 2013;231:226–233. doi: 10.1016/j.jpowsour.2012.12.088. DOI
Bozec N.L., Comepre C., L’Her M., Laouenan A., Costa D., Marcus P. Infuence of stainless steel surface treatment on the oxygen reduction reaction in seawater. Corros. Sci. 2001;43:765–786. doi: 10.1016/S0010-938X(00)00113-X. DOI
Dadfar M., Salehi M., Golozar M.A., Trasatti S., Casaletto M.P. Surface and corrosion properties of modified passive layer on 304 stainless steel as bipolar plates for PEMFCs. Int. J. Hydrogen Energy. 2017;42:25869–25876. doi: 10.1016/j.ijhydene.2017.08.169. DOI
Dadfar M., Salehi M., Golozar M.A., Trasatti S. Surface modification of 304 stainless steels to improve corrosion behavior and interfacial contact resistance of bipolar plates. Int. J. Hydrogen Energy. 2016;41:21375–21384. doi: 10.1016/j.ijhydene.2016.09.149. DOI
Kumagai M., Myung S.-T., Katada Y., Yashiro H. Stability of type 310S stainless steel bipolar plates tested at various current densities in proton exchange membrane fuel cells. Electrochim. Acta. 2016;211:754–760. doi: 10.1016/j.electacta.2016.06.106. DOI
Jinlong L., Zhuqing W., Tongxiang L., Ken S., Hideo M. Enhancing the corrosion resistance of the 2205 duplex stainless steel bipolar plates in PEMFCs environment by surface enriched molybdenum. Results Phys. 2017;7:3459–3464. doi: 10.1016/j.rinp.2017.09.001. DOI
Wang J., Sun J., Li S., Wen Z., Ji S. Surface diffusion modification AISI 304SS stainless steel as bipolar plate material for proton exchange membrane fuel cell. Int. J. Hydrogen Energy. 2012;37:1140–1144. doi: 10.1016/j.ijhydene.2011.02.072. DOI
Davies D.P., Adcock P.L., Turpin M., Rowen S.J. Stainless steel as a bipolar plate material for solid polymer fuel cells. J. Power Source. 2000;86:237–242. doi: 10.1016/S0378-7753(99)00524-8. DOI
Kumagai M., Myung S.-T., Kuwata S., Asaishi R., Yashiro H. Corrosion behavior of austenitic stainless steels as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells. Electrochim. Acta. 2008;53:4205–4212. doi: 10.1016/j.electacta.2007.12.078. DOI
Zhou Y., Engelberg D.L. Application of bipolar electrochemistry to assess the ambient temperature corrosion resistance of solution annealed type 2205 duplex stainless steel. Mater. Chem. Phys. 2022;275:125183. doi: 10.1016/j.matchemphys.2021.125183. DOI
Weil K.S., Kim J.Y., Xia G., Coleman J., Yang Z.G. Boronization of nickel and nickel clad materials for potential use in polymer electrolyte membrane fuel cells. Surf. Coat. Technol. 2006;201:4436–4441. doi: 10.1016/j.surfcoat.2006.08.039. DOI
Williams W.S. Transition-metal carbides. Prog. Solid State Chem. 1971;6:57–118. doi: 10.1016/0079-6786(71)90028-8. DOI
Iversen A.K. Stainless steels in bipolar plates—Surface resistive properties of corrosion resistant steel grades during current loads. Corros. Sci. 2006;48:1036–1058. doi: 10.1016/j.corsci.2005.05.012. DOI
Hinds G., Brightman E. Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates. Int. J. Hydrogen Energy. 2015;40:2785–2791. doi: 10.1016/j.ijhydene.2014.12.085. DOI
Office of Energy Efficiency & Renewable Energy. DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. [(accessed on 20 March 2021)];2019 Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components.
Yang Y., Guo L.-j., Liu H. Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities. Int. J. Hydrogen Energy. 2011;36:1654–1663. doi: 10.1016/j.ijhydene.2010.10.067. DOI
Yoon W., Huang X., Fazzino P., Reifsnider K.L., Akkaoui M.A. Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells. J. Power Source. 2008;179:265–273. doi: 10.1016/j.jpowsour.2007.12.034. DOI
Stoulil J., Hemmer V., Šefl V., Bystrianský J. Corrosion resistance of new powder metallurgy boron-containing stainless steel in the nuclear repository environment. Mater. Corros. 2015;66:342–346. doi: 10.1002/maco.201307468. DOI
Yamada K., Ohtani H., Hasebe M. Thermodynamic Analysis of the Fe-Cr-B Ternary System. High Temp. Mater. Processes. 2008;27:269–284. doi: 10.1515/HTMP.2008.27.4.269. DOI
Wang H., Wang T. A comparative study of high boron alloys with 2.0 wt% B based on 304 and 316 stainless steels. Mater. Lett. 2021;285:129035. doi: 10.1016/j.matlet.2020.129035. DOI
Serafini F.L., Peruzzo M., Krindges I., Ordoñez M.F.C., Rodrigues D., Souza R.M., Farias M.C.M. Microstructure and mechanical behavior of 316L liquid phase sintered stainless steel with boron addition. Mater. Charact. 2019;152:253–264. doi: 10.1016/j.matchar.2019.04.009. DOI
Loria E.A., Isaacs H.S. Type 304 Stainless Steel With 0.5% Boron for Storage of Spent Nuclear Fuel. JOM. 1980;32:10–17. doi: 10.1007/BF03354517. DOI
Szewczyk-Nykiel A. The effect of the addition of boron on the densification, microstructure and properties of sintered 17-4 ph stainless steel. Tech. Trans. 2014;2-M:85–96.
Papadias D.D., Ahluwalia R.K., Thomson J.K., Meyer H.M., Brady M.P., Wang H., Turner J.A., Mukundan R., Borup R. Degradation of SS316L bipolar plates in simulated fuel cell environment: Corrosion rate, barrier film formation kinetics and contact resistance. J. Power Source. 2015;273:1237–1249. doi: 10.1016/j.jpowsour.2014.02.053. DOI
Feng K., Shen Y., Mai J., Liu D., Cai X. An investigation into nickel implanted 316L stainless steel as a bipolar plate for PEM fuel cell. J. Power Source. 2008;182:145–152. doi: 10.1016/j.jpowsour.2008.03.088. DOI
Feng K., Shen Y., Liu D., Chu P.K., Cai X. Ni–Cr Co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy. 2010;35:690–700. doi: 10.1016/j.ijhydene.2009.10.106. DOI
Jeon W.S., Kim J.G., Kim Y.J., Han J.G. Electrochemical properties of TiN coatings on 316L stainless steel separator for polymer electrolyte membrane fuel cell. Thin Solid Film. 2008;516:3669–3672. doi: 10.1016/j.tsf.2007.08.086. DOI
Wind J., Späh R., Kaiser W., Böhm G. Metallic bipolar plates for PEM fuel cells. J. Power Source. 2002;105:256–260. doi: 10.1016/S0378-7753(01)00950-8. DOI
Vladimír Č. Korozivzdorné Oceli a Slitiny. Academia; Prague, Czech Republic: 1999.
Fremunt P., Podrábksý T. Konstrukční Oceli. Akademické Nakladatelství CERM; Brno, Czech Republic: 1996.
Richards J., Cremers C., Fischer P., Schmidt K. Corrosion Studies on Electro Polished Stainless Steels for the Use as Metallic Bipolar Plates in PEMFC Applications. Energy Procedia. 2012;20:324–333. doi: 10.1016/j.egypro.2012.03.032. DOI
Yun Y.-H. Deposition of gold–titanium and gold–nickel coatings on electropolished 316L stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2010;35:1713–1718. doi: 10.1016/j.ijhydene.2009.12.036. DOI
Yang M., Zhang D. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. Energy. 2014;64:242–247. doi: 10.1016/j.energy.2013.10.080. DOI
Olsson C.O.A., Landolt D. Film Growth during Anodic Polarization in the Passive Region on 304 Stainless Steels with Cr, Mo, or W Additions Studied with EQCM and XPS. J. Electrochem. Soc. 2001;148:B438. doi: 10.1149/1.1404969. DOI
Kim J.S., Peelen W.H.A., Hemmes K., Makkus R.C. Effect of alloying elements on the contact resistance and the passivation behaviour of stainless steels. Corros. Sci. 2002;44:635–655. doi: 10.1016/S0010-938X(01)00107-X. DOI
Schoeler A.C., Kaun T.D., Krumpelt M. Corrosion behavior of coated steels and Mn- and Co-alloyed steels for separator materials on the cathode side in molten carbonate fuel cells. Mater. Corros. Werkstof. Korros. 2000;51:797–807. doi: 10.1002/1521-4176(200011)51:11<797::AID-MACO797>3.0.CO;2-E. DOI