Octahedral Molybdenum Cluster-Based Nanomaterials for Potential Photodynamic Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-11688S
Czech Science Foundation
LTAUSA18083
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36234477
PubMed Central
PMC9565569
DOI
10.3390/nano12193350
PII: nano12193350
Knihovny.cz E-zdroje
- Klíčová slova
- octahedral molybdenum clusters, photodynamic therapy, polymer carrier,
- Publikační typ
- časopisecké články MeSH
Photo/radiosensitizers, such as octahedral molybdenum clusters (Mo6), have been intensively studied for photodynamic applications to treat various diseases. However, their delivery to the desired target can be hampered by its limited solubility, low stability in physiological conditions, and inappropriate biodistribution, thus limiting the therapeutic effect and increasing the side effects of the therapy. To overcome such obstacles and to prepare photofunctional nanomaterials, we employed biocompatible and water-soluble copolymers based on N-(2-hydroxypropyl)methacrylamide (pHPMA) as carriers of Mo6 clusters. Several strategies based on electrostatic, hydrophobic, or covalent interactions were employed for the formation of polymer-cluster constructs. Importantly, the luminescent properties of the Mo6 clusters were preserved upon association with the polymers: all polymer-cluster constructs exhibited an effective quenching of their excited states, suggesting a production of singlet oxygen (O2(1Δg)) species which is a major factor for a successful photodynamic treatment. Even though the colloidal stability of all polymer-cluster constructs was satisfactory in deionized water, the complexes prepared by electrostatic and hydrophobic interactions underwent severe aggregation in phosphate buffer saline (PBS) accompanied by the disruption of the cohesive forces between the cluster and polymer molecules. On the contrary, the conjugates prepared by covalent interactions notably displayed colloidal stability in PBS in addition to high luminescence quantum yields, suggesting that pHPMA is a suitable nanocarrier for molybdenum cluster-based photosensitizers intended for photodynamic applications.
Zobrazit více v PubMed
Maeda H., Nakamura H., Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013;65:71–79. doi: 10.1016/j.addr.2012.10.002. PubMed DOI
Fang J., Šubr V., Islam W., Hackbarth S., Islam R., Etrych T., Ulbrich K., Maeda H. N-(2-hydroxypropyl)methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. Eur. J. Pharm. Biopharm. 2018;130:165–176. doi: 10.1016/j.ejpb.2018.06.005. PubMed DOI
Berg K., Selbo P.K., Weyergang A., Dietze A., Prasmickaite L., Bonsted A., Engesaeter B.Ø., Angell-Petersen E., Warloe T., Frandsen N., et al. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. Pt 2J. Microsc. 2005;218:133–147. doi: 10.1111/j.1365-2818.2005.01471.x. PubMed DOI
Li L., Huh K.M. Polymeric nanocarrier systems for photodynamic therapy. Biomater. Res. 2014;18:19. doi: 10.1186/2055-7124-18-19. PubMed DOI PMC
Chepurna O.M., Yakovliev A., Ziniuk R., Nikolaeva O.A., Levchenko S.M., Xu H., Losytskyy M.Y., Bricks J.L., Slominskii Y.L., Vretik L.O., et al. Core–shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions. J. Nanobiotechnol. 2020;18:19. doi: 10.1186/s12951-020-0572-1. PubMed DOI PMC
Gibot L., Lemelle A., Till U., Moukarzel B., Mingotaud A.-F., Pimienta V., Saint-Aguet P., Rols M.-P., Gaucher M., Violleau F., et al. Polymeric Micelles Encapsulating Photosensitizer: Structure/Photodynamic Therapy Efficiency Relation. Biomacromolecules. 2014;15:1443–1455. doi: 10.1021/bm5000407. PubMed DOI
Lee Y.-E.K., Kopelman R. Methods in Molecular Biology. Volume 726. Springer; Clifton, NJ, USA: 2011. Polymeric Nanoparticles for Photodynamic Therapy; pp. 151–178. PubMed
Ricci-Júnior E., Marchetti J.M. Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use. J. Microencapsul. 2006;23:523–538. doi: 10.1080/02652040600775525. PubMed DOI
Weiss G.J., Chao J., Neidhart J.D., Ramanathan R.K., Bassett D., Neidhart J.A., Choi C.H.J., Chow W., Chung V., Forman S.J., et al. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Investig. New Drugs. 2013;31:986–1000. doi: 10.1007/s10637-012-9921-8. PubMed DOI PMC
Brandhonneur N., Hatahet T., Amela-Cortes M., Molard Y., Cordier S., Dollo G. Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer. Eur. J. Pharm. Biopharm. 2018;125:95–105. doi: 10.1016/j.ejpb.2018.01.007. PubMed DOI
Kirakci K., Demel J., Hynek J., Zelenka J., Rumlová M., Ruml T., Lang K. Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorg. Chem. 2019;58:16546–16552. doi: 10.1021/acs.inorgchem.9b02569. PubMed DOI
Kirakci K., Zelenka J., Rumlová M., Cvačka J., Ruml T., Lang K. Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: Photodynamic anticancer and antibacterial activities. Biomater. Sci. 2019;7:1386–1392. doi: 10.1039/C8BM01564C. PubMed DOI
Brandhonneur N., Boucaud Y., Verger A., Dumait N., Molard Y., Cordier S., Dollo G. Molybdenum cluster loaded PLGA nanoparticles as efficient tools against epithelial ovarian cancer. Int. J. Pharm. 2021;592:120079. doi: 10.1016/j.ijpharm.2020.120079. PubMed DOI
Smith C.B., Days L.C., Alajroush D.R., Faye K., Khodour Y., Beebe S.J., Holder A.A. Photodynamic Therapy of Inorganic Complexes for the Treatment of Cancer†. Photochem. Photobiol. 2022;98:17–41. doi: 10.1111/php.13467. PubMed DOI
Kirakci K., Kubát P., Fejfarová K., Martinčík J., Nikl M., Lang K. X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators. Inorg. Chem. 2016;55:803–809. doi: 10.1021/acs.inorgchem.5b02282. PubMed DOI
Kirakci K., Zelenka J., Rumlová M., Martinčík J., Nikl M., Ruml T., Lang K. Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. J. Mater. Chem. B. 2018;6:4301–4307. doi: 10.1039/C8TB00893K. PubMed DOI
Kirakci K., Pozmogova T.N., Protasevich A.Y., Vavilov G.D., Stass D.V., Shestopalov M.A., Lang K. A water-soluble octahedral molybdenum cluster complex as a potential agent for X-ray induced photodynamic therapy. Biomater. Sci. 2021;9:2893–2902. doi: 10.1039/D0BM02005B. PubMed DOI
Koncošová M., Rumlová M., Mikyšková R., Reiniš M., Zelenka J., Ruml T., Kirakci K., Lang K. Avenue to X-ray-induced photodynamic therapy of prostatic carcinoma with octahedral molybdenum cluster nanoparticles. J. Mater. Chem. B. 2022;10:3303–3310. doi: 10.1039/D2TB00141A. PubMed DOI
Felip-León C., Arnau del Valle C., Pérez-Laguna V., Isabel Millán-Lou M., Miravet J.F., Mikhailov M., Sokolov M.N., Rezusta-López A., Galindo F. Superior performance of macroporous over gel type polystyrene as a support for the development of photo-bactericidal materials. J. Mater. Chem. B. 2017;5:6058–6064. doi: 10.1039/C7TB01478C. PubMed DOI
Vorotnikova N.A., Alekseev A.Y., Vorotnikov Y.A., Evtushok D.V., Molard Y., Amela-Cortes M., Cordier S., Smolentsev A.I., Burton C.G., Kozhin P.M., et al. Octahedral molybdenum cluster as a photoactive antimicrobial additive to a fluoroplastic. Mater. Sci. Eng. C. 2019;105:110150. doi: 10.1016/j.msec.2019.110150. PubMed DOI
Kirakci K., Nguyen T.K.N., Grasset F., Uchikoshi T., Zelenka J., Kubát P., Ruml T., Lang K. Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light. ACS Appl. Mater. Interfaces. 2020;12:52492–52499. doi: 10.1021/acsami.0c19036. PubMed DOI
López-López N., Muñoz Resta I., de Llanos R., Miravet J.F., Mikhaylov M., Sokolov M.N., Ballesta S., García-Luque I., Galindo F. Photodynamic Inactivation of Staphylococcus aureus Biofilms Using a Hexanuclear Molybdenum Complex Embedded in Transparent polyHEMA Hydrogels. ACS Biomater. Sci. Eng. 2020;6:6995–7003. doi: 10.1021/acsbiomaterials.0c00992. PubMed DOI
Jackson J.A., Turro C., Newsham M.D., Nocera D.G. Oxygen quenching of electronically excited hexanuclear molybdenum and tungsten halide clusters. J. Phys. Chem. 1990;94:4500–4507. doi: 10.1021/j100374a029. DOI
Kirakci K., Kubát P., Langmaier J., Polívka T., Fuciman M., Fejfarová K., Lang K. A comparative study of the redox and excited state properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I) Dalt. Trans. 2013;42:7224. doi: 10.1039/c3dt32863e. PubMed DOI
Kirakci K., Kubáňová M., Přibyl T., Rumlová M., Zelenka J., Ruml T., Lang K. A Cell Membrane Targeting Molybdenum-Iodine Nanocluster: Rational Ligand Design toward Enhanced Photodynamic Activity. Inorg. Chem. 2022;61:5076–5083. doi: 10.1021/acs.inorgchem.2c00040. PubMed DOI
Aubert T., Burel A., Esnault M.A., Cordier S., Grasset F., Cabello-Hurtado F. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. J. Hazard. Mater. 2012;219–220:111–118. doi: 10.1016/j.jhazmat.2012.03.058. PubMed DOI
Nakamura H., Liao L., Hitaka Y., Tsukigawa K., Subr V., Fang J., Ulbrich K., Maeda H. Micelles of zinc protoporphyrin conjugated to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer for imaging and light-induced antitumor effects in vivo. J. Control. Release. 2013;165:191–198. doi: 10.1016/j.jconrel.2012.11.017. PubMed DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B. Polymeric drugs based on conjugates of synthetic and natural macromolecules. I. Synthesis and physico-chemical characterisation. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Šubr V., Ulbrich K. Synthesis and properties of new N-(2-hydroxypropyl)-methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 2006;66:1525–1538. doi: 10.1016/j.reactfunctpolym.2006.05.002. DOI
Chytil P., Etrych T., Koňák Č., Šírová M., Mrkvan T., Bouček J., Říhová B., Ulbrich K. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J. Control. Release. 2008;127:121–130. doi: 10.1016/j.jconrel.2008.01.007. PubMed DOI
Bojarová P., Tavares M.R., Laaf D., Bumba L., Petrásková L., Konefał R., Bláhová M., Pelantová H., Elling L., Etrych T., et al. Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J. Nanobiotechnol. 2018;16:73. doi: 10.1186/s12951-018-0399-1. PubMed DOI PMC
Chytil P., Etrych T., Kříž J., Subr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Perrier S., Takolpuckdee P., Mars C.A. Reversible Addition−Fragmentation Chain Transfer Polymerization: End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI
Machová D., Koziolová E., Chytil P., Venclíková K., Etrych T., Janoušková O. Nanotherapeutics with suitable properties for advanced anticancer therapy based on HPMA copolymer-bound ritonavir via pH-sensitive spacers. Eur. J. Pharm. Biopharm. 2018;131:141–150. doi: 10.1016/j.ejpb.2018.07.023. PubMed DOI
Kirakci K., Zelenka J., Křížová I., Ruml T., Lang K. Octahedral Molybdenum Cluster Complexes with Optimized Properties for Photodynamic Applications. Inorg. Chem. 2020;59:9287–9293. doi: 10.1021/acs.inorgchem.0c01173. PubMed DOI
Kirakci K., Kubát P., Kučeráková M., Šícha V., Gbelcová H., Lovecká P., Grznárová P., Ruml T., Lang K. Water-soluble octahedral molybdenum cluster compounds Na2[Mo6I8(N3)6] and Na2[Mo6I8(NCS)6]: Syntheses, luminescence, and in vitro studies. Inorganica Chim. Acta. 2016;441:42–49. doi: 10.1016/j.ica.2015.10.043. DOI
Etrych T., Mrkvan T., Chytil P., Koňák Č., Říhová B., Ulbrich K. N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI
Fang J., Islam W., Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020;157:142–160. doi: 10.1016/j.addr.2020.06.005. PubMed DOI
Pola R., Braunová A., Laga R., Pechar M., Ulbrich K. Click chemistry as a powerful and chemoselective tool for the attachment of targeting ligands to polymer drug carriers. Polym. Chem. 2014;5:1340–1350. doi: 10.1039/C3PY01376F. DOI
Filippov S.K., Chytil P., Konarev P.V., Dyakonova M., Papadakis C., Zhigunov A., Plestil J., Stepanek P., Etrych T., Ulbrich K., et al. Macromolecular HPMA-based nanoparticles with cholesterol for solid-tumor targeting: Detailed study of the inner structure of a highly efficient drug delivery system. Biomacromolecules. 2012;13:2594–2604. doi: 10.1021/bm3008555. PubMed DOI
Chytil P., Etrych T., Kostka L., Ulbrich K. Hydrolytically Degradable Polymer Micelles for Anticancer Drug Delivery to Solid Tumors. Macromol. Chem. Phys. 2012;213:858–867. doi: 10.1002/macp.201100632. DOI
Filippov S.K., Vishnevetskaya N.S., Niebuur B.J., Koziolová E., Lomkova E.A., Chytil P., Etrych T., Papadakis C.M. Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers. Colloid Polym. Sci. 2017;295:1313–1325. doi: 10.1007/s00396-017-4027-7. DOI
Chytil P., Šírová M., Kudláčová J., Říhová B., Ulbrich K., Etrych T. Bloodstream Stability Predetermines the Antitumor Efficacy of Micellar Polymer–Doxorubicin Drug Conjugates with pH-Triggered Drug Release. Mol. Pharm. 2018;15:3654–3663. doi: 10.1021/acs.molpharmaceut.8b00156. PubMed DOI
Braunová A., Chytil P., Laga R., Šírová M., Machová D., Parnica J., Říhová B., Janoušková O., Etrych T. Polymer nanomedicines based on micelle-forming amphiphilic or water-soluble polymer-doxorubicin conjugates: Comparative study of in vitro and in vivo properties related to the polymer carrier structure, composition, and hydrodynamic properties. J. Control. Release. 2020;321:718–733. doi: 10.1016/j.jconrel.2020.03.002. PubMed DOI
Lieber E., Rao C.N.R., Hoffman C.W.W., Chao T.S. Infrared Spectra of Organic Azides. Anal. Chem. 1957;29:916–918. doi: 10.1021/ac60126a016. DOI
Agrell I., Klæboe P., Pettersson B., Svensson S., Koskikallio J., Kachi S. The Infra-red Spectra of Some Inorganic Azide Compounds. Acta Chem. Scand. 1971;25:2965–2974. doi: 10.3891/acta.chem.scand.25-2965. DOI
Diana E., Gatterer K., Kettle S.F.A. The vibrational spectroscopy of the coordinated azide anion; A theoretical study. Phys. Chem. Chem. Phys. 2016;18:414–425. doi: 10.1039/C5CP05566K. PubMed DOI
Gai X.S., Coutifaris B.A., Brewer S.H., Fenlon E.E. A direct comparison of azide and nitrile vibrational probes. Phys. Chem. Chem. Phys. 2011;13:5926–5930. doi: 10.1039/c0cp02774j. PubMed DOI PMC