• This record comes from PubMed

PLA/PHB-Based Materials Fully Biodegradable under Both Industrial and Home-Composting Conditions

. 2022 Sep 30 ; 14 (19) : . [epub] 20220930

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

In order to make bioplastics accessible for a wider spectrum of applications, ready-to-use plastic material formulations should be available with tailored properties. Ideally, these kinds of materials should also be "home-compostable" to simplify their organic recycling. Therefore, materials based on PLA (polylactid acid) and PHB (polyhydroxybutyrate) blends are presented which contain suitable additives, and some of them contain also thermoplastic starch as a filler, which decreases the price of the final compound. They are intended for various applications, as documented by products made out of them. The produced materials are fully biodegradable under industrial composting conditions. Surprisingly, some of the materials, even those which contain more PLA than PHB, are also fully biodegradable under home-composting conditions within a period of about six months. Experiments made under laboratory conditions were supported with data obtained from a kitchen waste pilot composter and from municipal composting plant experiments. Material properties, environmental conditions, and microbiology data were recorded during some of these experiments to document the biodegradation process and changes on the surface and inside the materials on a molecular level.

See more in PubMed

Duraj-Thatte A.M., Manjula-Basavanna A., Courchesne N.-M.D., Cannici G.I., Sánchez-Ferrer A., Frank B.P., Hag L.V., Cotts S.K., Fairbrother D.H., Mezzenga R., et al. Water-processable, biodegradable and coatable aquaplastic from engineered biofilms. Nat. Chem. Biol. 2021;17:732–738. doi: 10.1038/s41589-021-00773-y. PubMed DOI PMC

Xia Q., Chen C., Yao Y., Li J., He S., Zhou Y., Li T., Pan X., Yao Y., Hu L. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 2021;4:627–635. doi: 10.1038/s41893-021-00702-w. DOI

Ghosh K., Jones B.H. Roadmap to Biodegradable Plastics—Current State and Research Needs. ACS Sustain. Chem. Eng. 2021;9:6170–6187. doi: 10.1021/acssuschemeng.1c00801. DOI

Liao J., Chen Q. Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation. J. Hazard. Mater. 2021;418:126329. doi: 10.1016/j.jhazmat.2021.126329. PubMed DOI

Šašinková D., Serbruyns L., Julinová M., FayyazBakhsh A., De Wilde B., Koutný M. Evaluation of the biodegradation of polymeric materials in the freshwater environment—An attempt to prolong and accelerate the biodegradation experiment. Polym. Degrad. Stab. 2022;203:110085. doi: 10.1016/j.polymdegradstab.2022.110085. DOI

Arockiam A.J., Subramanian K., Padmanabhan R., Selvaraj R., Bagal D.K., Rajesh S. A review on PLA with different fillers used as a filament in 3D printing. Mater. Today Proc. 2021;50:2057–2064. doi: 10.1016/j.matpr.2021.09.413. DOI

Ko E., Kim T., Ahn J., Park S., Pak S., Kim M., Kim H. Synergic Effect of HNT/oMMT Bi-filler System for the Mechanical Enhancement of PLA/PBAT Film. Fibers Polym. 2021;22:2163–2169. doi: 10.1007/s12221-021-1006-x. DOI

Shanmugam V., Rajendran D.J.J., Babu K., Rajendran S., Veerasimman A., Marimuthu U., Singh S., Das O., Neisiany R.E., Hedenqvist M.S., et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polym. Test. 2020;93:106925. doi: 10.1016/j.polymertesting.2020.106925. DOI

Sedničková M., Pekařová S., Kucharczyk P., Bočkaj J., Janigová I., Kleinová A., Jochec-Mošková D., Omaníková L., Perďochová D., Koutný M., et al. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost. Int. J. Biol. Macromol. 2018;113:434–442. doi: 10.1016/j.ijbiomac.2018.02.078. PubMed DOI

Arrieta M.P., López J., Rayón E., Jiménez A. Disintegrability under composting conditions of plasticized PLA&PHB blends. Polym. Degrad. Stab. 2014;108:307–318. doi: 10.1016/j.polymdegradstab.2014.01.034. DOI

Rahman H., Bhoi P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021;294:126218. doi: 10.1016/j.jclepro.2021.126218. DOI

Lee P.-K., Choi B.-Y., Kang M.-J. Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk. Chemosphere. 2015;119:1411–1421. doi: 10.1016/j.chemosphere.2014.10.028. PubMed DOI

Yu Z., Tang J., Liao H., Liu X., Zhou P., Chen Z., Rensing C., Zhou S. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour. Technol. 2018;265:146–154. doi: 10.1016/j.biortech.2018.06.011. PubMed DOI

Altieri R., Seggiani M., Esposito A., Cinelli P., Stanzione V. Thermoplastic Blends Based on Poly(Butylene Succinate-co-Adipate) and Different Collagen Hydrolysates from Tanning Industry—II: Aerobic Biodegradation in Composting Medium. J. Polym. Environ. 2021;29:3375–3388. doi: 10.1007/s10924-021-02124-3. DOI

Mengqi Z., Shi A., Ajmal M., Ye L., Awais M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Convers. Biorefinery. 2021;24:1–24. doi: 10.1007/s13399-021-01438-5. DOI

Schulte P.M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 2015;218:1856–1866. doi: 10.1242/jeb.118851. PubMed DOI

Iovino R., Zullo R., Rao M.A., Cassar L., Gianfreda L. Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym. Degrad. Stab. 2008;93:147–157. doi: 10.1016/j.polymdegradstab.2007.10.011. DOI

Apinya T., Sombatsompop N., Prapagdee B. Selection of a Pseudonocardia sp. RM423 that accelerates the biodegradation of poly(lactic) acid in submerged cultures and in soil microcosms. Int. Biodeterior. Biodegrad. 2015;99:23–30. doi: 10.1016/j.ibiod.2015.01.001. DOI

Narancic T., Verstichel S., Chaganti S.R., Morales-Gamez L., Kenny S.T., De Wilde B., Padamati R.B., O’Connor K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018;52:10441–10452. doi: 10.1021/acs.est.8b02963. PubMed DOI

Accinelli C., Abbas H.K., Bruno V., Nissen L., Vicari A., Bellaloui N., Little N.S., Shier W.T. Persistence in soil of microplastic films from ultra-thin compostable plastic bags and implications on soil Aspergillus flavus population. Waste Manag. 2020;113:312–318. doi: 10.1016/j.wasman.2020.06.011. PubMed DOI

Bandini F., Frache A., Ferrarini A., Taskin E., Cocconcelli P.S., Puglisi E. Fate of Biodegradable Polymers Under Industrial Conditions for Anaerobic Digestion and Aerobic Composting of Food Waste. J. Polym. Environ. 2020;28:2539–2550. doi: 10.1007/s10924-020-01791-y. DOI

Koskimäki J.J., Kajula M., Hokkanen J., Ihantola E.-L., Kim J.H., Hautajärvi H., Hankala E., Suokas M., Pohjanen J., Podolich O., et al. Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat. Chem. Biol. 2016;12:332–338. doi: 10.1038/nchembio.2043. PubMed DOI

Opgenorth P.H., Korman T.P., Bowie J.U. A synthetic biochemistry module for production of bio-based chemicals from glucose. Nat. Chem. Biol. 2016;12:393–395. doi: 10.1038/nchembio.2062. PubMed DOI

Siracusa V., Rocculi P., Romani S., Rosa M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008;19:634–643. doi: 10.1016/j.tifs.2008.07.003. DOI

Šerá J., Serbruyns L., De Wilde B., Koutný M. Accelerated biodegradation testing of slowly degradable polyesters in soil. Polym. Degrad. Stab. 2020;171:109031. doi: 10.1016/j.polymdegradstab.2019.109031. DOI

Vaverková M., Adamcová D., Kotovicová J., Toman F. Evaluation of biodegradability of plastics bags in composting conditions. Ecol. Chem. Eng. S. 2014;21:45–57. doi: 10.2478/eces-2014-0004. DOI

Husárová L., Pekařová S., Stloukal P., Kucharzcyk P., Verney V., Commereuc S., Ramone A., Koutny M. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid) Int. J. Biol. Macromol. 2014;71:155–162. doi: 10.1016/j.ijbiomac.2014.04.050. PubMed DOI

Stloukal P., Kalendova A., Mattausch H., Laske S., Holzer C., Koutny M. The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polym. Test. 2015;41:124–132. doi: 10.1016/j.polymertesting.2014.10.015. DOI

Stloukal P., Pekařová S., Kalendova A., Mattausch H., Laske S., Holzer C., Chitu L., Bodner S., Maier G., Slouf M., et al. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manag. 2015;42:31–40. doi: 10.1016/j.wasman.2015.04.006. PubMed DOI

Jašo V., Glenn G., Klamczynski A., Petrović Z.S. Biodegradability study of polylactic acid/ thermoplastic polyurethane blends. Polym. Test. 2015;47:1–3. doi: 10.1016/j.polymertesting.2015.07.011. DOI

Janigová I., Lacík I., Chodák I. Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polym. Degrad. Stab. 2002;77:35–41. doi: 10.1016/S0141-3910(02)00077-0. DOI

Špitalský Z., Lacík I., Lathová E., Janigová I., Chodák I. Controlled degradation of polyhydroxybutyrate via alcoholysis with ethylene glycol or glycerol. Polym. Degrad. Stab. 2006;91:856–861. doi: 10.1016/j.polymdegradstab.2005.06.019. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...