PLA/PHB-Based Materials Fully Biodegradable under Both Industrial and Home-Composting Conditions
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36236060
PubMed Central
PMC9572414
DOI
10.3390/polym14194113
PII: polym14194113
Knihovny.cz E-resources
- Keywords
- biodegradation, blend polymeric material, home-compost, industrial compost, polyhydroxybutyrate (PHB), polylactic acid (PLA),
- Publication type
- Journal Article MeSH
In order to make bioplastics accessible for a wider spectrum of applications, ready-to-use plastic material formulations should be available with tailored properties. Ideally, these kinds of materials should also be "home-compostable" to simplify their organic recycling. Therefore, materials based on PLA (polylactid acid) and PHB (polyhydroxybutyrate) blends are presented which contain suitable additives, and some of them contain also thermoplastic starch as a filler, which decreases the price of the final compound. They are intended for various applications, as documented by products made out of them. The produced materials are fully biodegradable under industrial composting conditions. Surprisingly, some of the materials, even those which contain more PLA than PHB, are also fully biodegradable under home-composting conditions within a period of about six months. Experiments made under laboratory conditions were supported with data obtained from a kitchen waste pilot composter and from municipal composting plant experiments. Material properties, environmental conditions, and microbiology data were recorded during some of these experiments to document the biodegradation process and changes on the surface and inside the materials on a molecular level.
See more in PubMed
Duraj-Thatte A.M., Manjula-Basavanna A., Courchesne N.-M.D., Cannici G.I., Sánchez-Ferrer A., Frank B.P., Hag L.V., Cotts S.K., Fairbrother D.H., Mezzenga R., et al. Water-processable, biodegradable and coatable aquaplastic from engineered biofilms. Nat. Chem. Biol. 2021;17:732–738. doi: 10.1038/s41589-021-00773-y. PubMed DOI PMC
Xia Q., Chen C., Yao Y., Li J., He S., Zhou Y., Li T., Pan X., Yao Y., Hu L. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 2021;4:627–635. doi: 10.1038/s41893-021-00702-w. DOI
Ghosh K., Jones B.H. Roadmap to Biodegradable Plastics—Current State and Research Needs. ACS Sustain. Chem. Eng. 2021;9:6170–6187. doi: 10.1021/acssuschemeng.1c00801. DOI
Liao J., Chen Q. Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation. J. Hazard. Mater. 2021;418:126329. doi: 10.1016/j.jhazmat.2021.126329. PubMed DOI
Šašinková D., Serbruyns L., Julinová M., FayyazBakhsh A., De Wilde B., Koutný M. Evaluation of the biodegradation of polymeric materials in the freshwater environment—An attempt to prolong and accelerate the biodegradation experiment. Polym. Degrad. Stab. 2022;203:110085. doi: 10.1016/j.polymdegradstab.2022.110085. DOI
Arockiam A.J., Subramanian K., Padmanabhan R., Selvaraj R., Bagal D.K., Rajesh S. A review on PLA with different fillers used as a filament in 3D printing. Mater. Today Proc. 2021;50:2057–2064. doi: 10.1016/j.matpr.2021.09.413. DOI
Ko E., Kim T., Ahn J., Park S., Pak S., Kim M., Kim H. Synergic Effect of HNT/oMMT Bi-filler System for the Mechanical Enhancement of PLA/PBAT Film. Fibers Polym. 2021;22:2163–2169. doi: 10.1007/s12221-021-1006-x. DOI
Shanmugam V., Rajendran D.J.J., Babu K., Rajendran S., Veerasimman A., Marimuthu U., Singh S., Das O., Neisiany R.E., Hedenqvist M.S., et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polym. Test. 2020;93:106925. doi: 10.1016/j.polymertesting.2020.106925. DOI
Sedničková M., Pekařová S., Kucharczyk P., Bočkaj J., Janigová I., Kleinová A., Jochec-Mošková D., Omaníková L., Perďochová D., Koutný M., et al. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost. Int. J. Biol. Macromol. 2018;113:434–442. doi: 10.1016/j.ijbiomac.2018.02.078. PubMed DOI
Arrieta M.P., López J., Rayón E., Jiménez A. Disintegrability under composting conditions of plasticized PLA&PHB blends. Polym. Degrad. Stab. 2014;108:307–318. doi: 10.1016/j.polymdegradstab.2014.01.034. DOI
Rahman H., Bhoi P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021;294:126218. doi: 10.1016/j.jclepro.2021.126218. DOI
Lee P.-K., Choi B.-Y., Kang M.-J. Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk. Chemosphere. 2015;119:1411–1421. doi: 10.1016/j.chemosphere.2014.10.028. PubMed DOI
Yu Z., Tang J., Liao H., Liu X., Zhou P., Chen Z., Rensing C., Zhou S. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour. Technol. 2018;265:146–154. doi: 10.1016/j.biortech.2018.06.011. PubMed DOI
Altieri R., Seggiani M., Esposito A., Cinelli P., Stanzione V. Thermoplastic Blends Based on Poly(Butylene Succinate-co-Adipate) and Different Collagen Hydrolysates from Tanning Industry—II: Aerobic Biodegradation in Composting Medium. J. Polym. Environ. 2021;29:3375–3388. doi: 10.1007/s10924-021-02124-3. DOI
Mengqi Z., Shi A., Ajmal M., Ye L., Awais M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Convers. Biorefinery. 2021;24:1–24. doi: 10.1007/s13399-021-01438-5. DOI
Schulte P.M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 2015;218:1856–1866. doi: 10.1242/jeb.118851. PubMed DOI
Iovino R., Zullo R., Rao M.A., Cassar L., Gianfreda L. Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym. Degrad. Stab. 2008;93:147–157. doi: 10.1016/j.polymdegradstab.2007.10.011. DOI
Apinya T., Sombatsompop N., Prapagdee B. Selection of a Pseudonocardia sp. RM423 that accelerates the biodegradation of poly(lactic) acid in submerged cultures and in soil microcosms. Int. Biodeterior. Biodegrad. 2015;99:23–30. doi: 10.1016/j.ibiod.2015.01.001. DOI
Narancic T., Verstichel S., Chaganti S.R., Morales-Gamez L., Kenny S.T., De Wilde B., Padamati R.B., O’Connor K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018;52:10441–10452. doi: 10.1021/acs.est.8b02963. PubMed DOI
Accinelli C., Abbas H.K., Bruno V., Nissen L., Vicari A., Bellaloui N., Little N.S., Shier W.T. Persistence in soil of microplastic films from ultra-thin compostable plastic bags and implications on soil Aspergillus flavus population. Waste Manag. 2020;113:312–318. doi: 10.1016/j.wasman.2020.06.011. PubMed DOI
Bandini F., Frache A., Ferrarini A., Taskin E., Cocconcelli P.S., Puglisi E. Fate of Biodegradable Polymers Under Industrial Conditions for Anaerobic Digestion and Aerobic Composting of Food Waste. J. Polym. Environ. 2020;28:2539–2550. doi: 10.1007/s10924-020-01791-y. DOI
Koskimäki J.J., Kajula M., Hokkanen J., Ihantola E.-L., Kim J.H., Hautajärvi H., Hankala E., Suokas M., Pohjanen J., Podolich O., et al. Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat. Chem. Biol. 2016;12:332–338. doi: 10.1038/nchembio.2043. PubMed DOI
Opgenorth P.H., Korman T.P., Bowie J.U. A synthetic biochemistry module for production of bio-based chemicals from glucose. Nat. Chem. Biol. 2016;12:393–395. doi: 10.1038/nchembio.2062. PubMed DOI
Siracusa V., Rocculi P., Romani S., Rosa M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008;19:634–643. doi: 10.1016/j.tifs.2008.07.003. DOI
Šerá J., Serbruyns L., De Wilde B., Koutný M. Accelerated biodegradation testing of slowly degradable polyesters in soil. Polym. Degrad. Stab. 2020;171:109031. doi: 10.1016/j.polymdegradstab.2019.109031. DOI
Vaverková M., Adamcová D., Kotovicová J., Toman F. Evaluation of biodegradability of plastics bags in composting conditions. Ecol. Chem. Eng. S. 2014;21:45–57. doi: 10.2478/eces-2014-0004. DOI
Husárová L., Pekařová S., Stloukal P., Kucharzcyk P., Verney V., Commereuc S., Ramone A., Koutny M. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid) Int. J. Biol. Macromol. 2014;71:155–162. doi: 10.1016/j.ijbiomac.2014.04.050. PubMed DOI
Stloukal P., Kalendova A., Mattausch H., Laske S., Holzer C., Koutny M. The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polym. Test. 2015;41:124–132. doi: 10.1016/j.polymertesting.2014.10.015. DOI
Stloukal P., Pekařová S., Kalendova A., Mattausch H., Laske S., Holzer C., Chitu L., Bodner S., Maier G., Slouf M., et al. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manag. 2015;42:31–40. doi: 10.1016/j.wasman.2015.04.006. PubMed DOI
Jašo V., Glenn G., Klamczynski A., Petrović Z.S. Biodegradability study of polylactic acid/ thermoplastic polyurethane blends. Polym. Test. 2015;47:1–3. doi: 10.1016/j.polymertesting.2015.07.011. DOI
Janigová I., Lacík I., Chodák I. Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polym. Degrad. Stab. 2002;77:35–41. doi: 10.1016/S0141-3910(02)00077-0. DOI
Špitalský Z., Lacík I., Lathová E., Janigová I., Chodák I. Controlled degradation of polyhydroxybutyrate via alcoholysis with ethylene glycol or glycerol. Polym. Degrad. Stab. 2006;91:856–861. doi: 10.1016/j.polymdegradstab.2005.06.019. DOI