Selected Simple Natural Antimicrobial Terpenoids as Additives to Control Biodegradation of Polyhydroxy Butyrate
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA/FT/2020/005
Internal Grant Agency of Tomas Bata University in Zlín
IGA/FT/2020/009
Internal Grant Agency of Tomas Bata University in Zlín
IGA/FT/2022/003
Internal Grant Agency of Tomas Bata University in Zlín
SEALIVE (Horizon 2020)
European Union
PubMed
36430556
PubMed Central
PMC9692992
DOI
10.3390/ijms232214079
PII: ijms232214079
Knihovny.cz E-resources
- Keywords
- biodegradation, essential oils (EOs), mechanical properties, polyhydroxybutyrate (PHB),
- MeSH
- Anti-Bacterial Agents MeSH
- Anti-Infective Agents * MeSH
- Butyrates * MeSH
- Eucalyptol MeSH
- Polyesters chemistry MeSH
- Terpenes MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Anti-Infective Agents * MeSH
- Butyrates * MeSH
- Eucalyptol MeSH
- Polyesters MeSH
- Terpenes MeSH
In this experimental research, different types of essential oils (EOs) were blended with polyhydroxybutyrate (PHB) to study the influence of these additives on PHB degradation. The blends were developed by incorporating three terpenoids at two concentrations (1 and 3%). The mineralization rate obtained from CO2 released from each sample was the factor that defined biodegradation. Furthermore, scanning electron microscope (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were used in this research. The biodegradation percentages of PHB blended with 3% of eucalyptol, limonene, and thymol after 226 days were reached 66.4%, 73.3%, and 76.9%, respectively, while the rate for pure PHB was 100% after 198 days, and SEM images proved these results. Mechanical analysis of the samples showed that eucalyptol had the highest resistance level, even before the burial test. The other additives showed excellent mechanical properties although they had less mechanical strength than pure PHB after extrusion. The samples' mechanical properties improved due to their crystallinity and decreased glass transition temperature (Tg). DSC results showed that blending terpenoids caused a reduction in Tg, which is evident in the DMA results, and a negligible reduction in melting point (Tm).
See more in PubMed
Wang J., Emmerich L., Wu J., Vana P., Zhang K. Hydroplastic polymers as eco-friendly hydrosetting plastics. Nat. Sustain. 2021;4:877–883. doi: 10.1038/s41893-021-00743-1. DOI
Fogašová M., Figalla S., Danišová L., Medlenová E., Hlaváčiková S., Bočkaj J., Plavec R., Alexy P., Repiská M., Přikryl R., et al. PLA/PHB-Based Materials Fully Biodegradable under Both Industrial and Home-Composting Conditions. Polymers. 2022;14:4113. doi: 10.3390/polym14194113. PubMed DOI PMC
Mangeon C., Michely L., Rios De Anda A., Thevenieau F., Renard E., Langlois V. Natural Terpenes Used as Plasticizers for Poly(3-hydroxybutyrate) ACS Sustain. Chem. Eng. 2018;6:16160–16168. doi: 10.1021/acssuschemeng.8b02896. DOI
Koller M. Recycling of waste streams of the biotechnological poly(hydroxyalkanoate) production by Haloferax mediterranei on whey. Int. J. Polym. Sci. 2015;2015:370164. doi: 10.1155/2015/370164. DOI
Rech C.R., da Silva Brabes K.C., Bagnara e Silva B.E., Bittencourt P.R.S., Koschevic M.T., da Silveira T.F.S., Martines M.A.U., Caon T., Martelli S.M. Biodegradation of eugenol-loaded polyhydroxybutyrate films in different soil types. Case Stud. Chem. Environ. Eng. 2020;2:100014. doi: 10.1016/j.cscee.2020.100014. DOI
Šerá J., Kadlečková M., Fayyazbakhsh A., Kučabová V., Koutný M. Occurrence and analysis of thermophilic poly(Butylene adipate-co-terephthalate)-degrading microorganisms in temperate zone soils. Int. J. Mol. Sci. 2020;21:7857. doi: 10.3390/ijms21217857. PubMed DOI PMC
Moradali M.F., Rehm B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol. 2020;18:195–210. doi: 10.1038/s41579-019-0313-3. PubMed DOI PMC
Jiang X.R., Yan X., Yu L.P., Liu X.Y., Chen G.Q. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nat. Commun. 2021;12:1513. doi: 10.1038/s41467-021-21632-3. PubMed DOI PMC
Gao M., Du D., Bo Z., Sui L. Poly-β-hydroxybutyrate (PHB)-accumulating Halomonas improves the survival, growth, robustness and modifies the gut microbial composition of Litopenaeus vannamei postlarvae. Aquaculture. 2019;500:607–612. doi: 10.1016/j.aquaculture.2018.10.032. DOI
Briassoulis D., Tserotas P., Athanasoulia I.-G. Alternative optimization routes for improving the performance of poly(3-hydroxybutyrate) (PHB) based plastics. J. Clean. Prod. 2021;318:128555. doi: 10.1016/j.jclepro.2021.128555. DOI
Lee J., Park H.J., Moon M., Lee J.-S., Min K. Recent progress and challenges in microbial polyhydroxybutyrate (PHB) production from CO2 as a sustainable feedstock: A state-of-the-art review. Bioresour. Technol. 2021;339:125616. doi: 10.1016/j.biortech.2021.125616. PubMed DOI
Park S., Yang Y.H., Choi K.Y. One-pot production of thermostable PHB biodegradable polymer by co-producing bio-melanin pigment in engineered Escherichia coli. Biomass Conv. Bioref. 2022 doi: 10.1007/s13399-021-02222-1. DOI
Pachekoski W.M., Agnelli J.A.M., Belem L.P. Thermal, mechanical and morphological properties of poly (hydroxybutyrate) and polypropylene blends after processing. Mater. Res. 2009;12:159–164. doi: 10.1590/S1516-14392009000200008. DOI
Aydemir D., Gardner D.J. Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydr. Polym. 2020;250:116867. doi: 10.1016/j.carbpol.2020.116867. PubMed DOI
Mohanrasu K., Premnath N., Siva Prakash G., Sudhakar M., Boobalan T., Arun A. Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. J. Photochem. Photobiol. B Biol. 2018;185:55–65. doi: 10.1016/j.jphotobiol.2018.05.014. PubMed DOI
Robledo-Ortíz J.R., González-López M.E., Martín del Campo A.S., Pérez-Fonseca A.A. Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review. J. Polym. Environ. 2021;29:1350–1364. doi: 10.1007/s10924-020-01979-2. PubMed DOI
Basnett P., Marcello E., Lukasiewicz B., Nigmatullin R., Paxinou A., Ahmad M.H., Gurumayum B., Roy I. Antimicrobial materials with lime oil and a poly(3-hydroxyalkanoate) produced via valorisation of sugar cane molasses. J. Funct. Biomater. 2020;11:24. doi: 10.3390/jfb11020024. PubMed DOI PMC
Nishida M., Tanaka T., Hayakawa Y., Ogura T., Ito Y., Nishida M. Multi-scale instrumental analyses of plasticized polyhydroxyalkanoates (PHA) blended with polycaprolactone (PCL) and the effects of crosslinkers and graft copolymers. RSC Adv. 2019;9:1551–1561. doi: 10.1039/C8RA10045D. PubMed DOI PMC
Rech C.R., Brabes K.C.S., Silva B.E.B., Martines M.A.U., Silveira T.F.S., Alberton J., Amadeu C.A.A., Caon T., Arruda E.J., Martelli S.M. Antimicrobial and Physical–Mechanical Properties of Polyhydroxybutyrate Edible Films Containing Essential Oil Mixtures. J. Polym. Environ. 2020;29:1202–1211. doi: 10.1007/s10924-020-01943-0. DOI
Miao L., Walton W.C., Wang L., Li L., Wang Y. Characterization of polylactic acids-polyhydroxybutyrate based packaging film with fennel oil, and its application on oysters. Food Packag. Shelf Life. 2019;22:100388. doi: 10.1016/j.fpsl.2019.100388. DOI
Namivandi-Zangeneh R., Yang Y., Xu S., Wong E.H.H., Boyer C. Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils. Biomacromolecules. 2020;21:262–272. doi: 10.1021/acs.biomac.9b01278. PubMed DOI
Ventura H., Laguna-Gutiérrez E., Rodriguez-Perez M.A., Ardanuy M. Effect of chain extender and water-quenching on the properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) foams for its production by extrusion foaming. Eur. Polym. J. 2016;85:14–25. doi: 10.1016/j.eurpolymj.2016.10.001. DOI
Duangphet S., Szegda D., Song J., Tarverdi K. The Effect of Chain Extender on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Thermal Degradation, Crystallization, and Rheological Behaviours. J. Polym. Environ. 2014;22:1–8. doi: 10.1007/s10924-012-0568-5. DOI
Narayanan A., Neera, Mallesha, Ramana K.V. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Appl. Biochem. Biotechnol. 2013;170:1379–1388. doi: 10.1007/s12010-013-0267-2. PubMed DOI
de Oliveira K.Á.R., de Sousa J.P., da Costa Medeiros J.A., de Figueiredo R.C.B.Q., Magnani M., de Siqueira J.P., de Souza E.L. Synergistic inhibition of bacteria associated with minimally processed vegetables in mixed culture by carvacrol and 1,8-cineole. Food Control. 2015;47:334–339. doi: 10.1016/j.foodcont.2014.07.014. DOI
Monistero V., Barberio A., Biscarini F., Cremonesi P., Castiglioni B., Graber H.U., Bottini E., Ceballos-Marquez A., Kroemker V., Petzer I.M., et al. Different distribution of antimicrobial resistance genes and virulence profiles of Staphylococcus aureus strains isolated from clinical mastitis in six countries. J. Dairy Sci. 2020;103:3431–3446. doi: 10.3168/jds.2019-17141. PubMed DOI
Porfírio E.M., Melo H.M., Pereira A.M.G., Cavalcante T.T.A., Gomes G.A., De Carvalho M.G., Costa R.A., Catunda F.E.A. In vitro antibacterial and antibiofilm activity of lippia alba essential oil, citral, and carvone against staphylococcus aureus. Sci. World J. 2017;2017:4962707. doi: 10.1155/2017/4962707. PubMed DOI PMC
Huang F., Kong J., Ju J., Zhang Y., Guo Y., Cheng Y., Qian H., Xie Y., Yao W. Membrane damage mechanism contributes to inhibition of trans-cinnamaldehyde on Penicillium italicum using Surface-Enhanced Raman Spectroscopy (SERS) Sci. Rep. 2019;9:490. doi: 10.1038/s41598-018-36989-7. PubMed DOI PMC
Beltrami L.V.R., Bandeira J.A.V., Scienza L.C., Zattera A.J. Biodegradable composites: Morphological, chemical, thermal, and mechanical properties of composites of poly(hydroxybutyrate-co-hydroxyvalerate) with curaua fibers after exposure to simulated soil. J. Appl. Polym. Sci. 2014;131:8769–8776. doi: 10.1002/app.40712. DOI
da Costa R.C., Daitx T.S., Mauler R.S., da Silva N.M., Miotto M., Crespo J.S., Carli L.N. Poly(hydroxybutyrate-co-hydroxyvalerate)-based nanocomposites for antimicrobial active food packaging containing oregano essential oil. Food Packag. Shelf Life. 2020;26:100602. doi: 10.1016/j.fpsl.2020.100602. DOI
Marcet I., Weng S., Sáez-Orviz S., Rendueles M., Díaz M. Production and characterisation of biodegradable PLA nanoparticles loaded with thymol to improve its antimicrobial effect. J. Food Eng. 2018;239:26–32. doi: 10.1016/j.jfoodeng.2018.06.030. DOI
Šašinková D., Serbruyns L., Julinová M., FayyazBakhsh A., De Wilde B., Koutný M. Evaluation of the biodegradation of polymeric materials in the freshwater environment—An attempt to prolong and accelerate the biodegradation experiment. Polym. Degrad. Stab. 2022;203:110085. doi: 10.1016/j.polymdegradstab.2022.110085. DOI
Dambolena J.S., López A.G., Cánepa M.C., Theumer M.G., Zygadlo J.A., Rubinstein H.R. Inhibitory effect of cyclic terpenes (limonene, menthol, menthone and thymol) on Fusarium verticillioides MRC 826 growth and fumonisin B1 biosynthesis. Toxicon. 2008;51:37–44. doi: 10.1016/j.toxicon.2007.07.005. PubMed DOI
Swiontek Brzezinka M., Richert A., Kalwasińska A., Świątczak J., Deja-Sikora E., Walczak M., Michalska-Sionkowska M., Piekarska K., Kaczmarek-Szczepańska B. Microbial degradation of polyhydroxybutyrate with embedded polyhexamethylene guanidine derivatives. Int. J. Biol. Macromol. 2021;187:309–318. doi: 10.1016/j.ijbiomac.2021.07.135. PubMed DOI
Fernandes M., Salvador A., Alves M.M., Vicente A.A. Factors affecting polyhydroxyalkanoates biodegradation in soil. Polym. Degrad. Stab. 2020;182:109408. doi: 10.1016/j.polymdegradstab.2020.109408. DOI
Sharma B., Jain P. Deciphering the advances in bioaugmentation of plastic wastes. J. Clean. Prod. 2020;275:123241. doi: 10.1016/j.jclepro.2020.123241. DOI
Zhou L., He H., Li M.c., Huang S., Mei C., Wu Q. Enhancing mechanical properties of poly(lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind. Crops Prod. 2018;112:449–459. doi: 10.1016/j.indcrop.2017.12.044. DOI