Occurrence and Analysis of Thermophilic Poly(butylene adipate-co-terephthalate)-Degrading Microorganisms in Temperate Zone Soils
Language English Country Switzerland Media electronic
Document type Comparative Study, Journal Article
Grant support
IGA/FT/2020/005
Internal Grant of Tomas Bata University in Zlin
PubMed
33113973
PubMed Central
PMC7660229
DOI
10.3390/ijms21217857
PII: ijms21217857
Knihovny.cz E-resources
- Keywords
- actinomycetes, biodegradation, compost, poly(butylene adipate-co-terephthalate), soil,
- MeSH
- Actinobacteria growth & development isolation & purification metabolism MeSH
- Bacillaceae growth & development isolation & purification metabolism MeSH
- Biodegradation, Environmental MeSH
- Composting MeSH
- Polyesters chemistry MeSH
- Soil Microbiology MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- poly(1,4-butylene terephthalate) MeSH Browser
- Polyesters MeSH
- RNA, Ribosomal, 16S MeSH
The ubiquity and character of thermophilic poly(butylene adipate-co-terephthalate) (PBAT)-degrading microorganisms in soils were investigated and compared to the process in an industrial composting plant. PBAT degraders were sought in 41 temperate zone soils. No mesophilic degraders were found by the employed method, but roughly 102 colony-forming units (CFUs) of thermophilic degraders per gram of soil were found in nine soils, and after an enrichment procedure, the PBAT-degrading consortia were isolated from 30 out of 41 soils. Thermophilic actinomycetes, Thermobispora bispora in particular, together with bacilli proved to be the key constituents of the isolated and characterized PBAT-degrading consortia, with bacilli comprising from about 30% to over 90% of the retrieved sequences. It was also shown that only consortia containing both constituents were able to decompose PBAT. For comparison, a PBAT film together with two types of PBAT/starch films were subjected to biodegradation in compost and the degrading microorganisms were analyzed. Bacilli and actinobacteria were again the most common species identified on pure PBAT film, especially at the beginning of biodegradation. Later, the composition of the consortia on all three tested materials became very similar and more diverse. Since waste containing PBAT-based materials is often intended to end up in composting plants, this study increases our confidence that thermophilic PBAT degraders are rather broadly present in the environment and the degradation of the material during the composting process should not be limited by the absence of specific microorganisms.
See more in PubMed
Liu J., Xu Y., Xia T., Xue C., Liu L., Chang P., Wang D., Sun X. Oxidized Oligosaccharides Stabilize Rehydrated Sea Cucumbers against High-Temperature Impact. Int. J. Mol. Sci. 2020;21:5204. doi: 10.3390/ijms21155204. PubMed DOI PMC
Wang H., Qian J., Ding F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018;66:395–413. doi: 10.1021/acs.jafc.7b04528. PubMed DOI
Lubkowski K., Smorowska A., Grzmil B., Kozłowska A. Controlled-Release Fertilizer Prepared Using a Biodegradable Aliphatic Copolyester of Poly(butylene succinate) and Dimerized Fatty Acid. J. Agric. Food Chem. 2015;63:2597–2605. doi: 10.1021/acs.jafc.5b00518. PubMed DOI
Sintim H.Y., Bary A.I., Hayes D.G., Wadsworth L.C., Anunciado M.B., English M.E., Bandopadhyay S., Schaeffer S.M., Debruyn J.M., Miles C.A., et al. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci. Total Environ. 2020;727:138668. doi: 10.1016/j.scitotenv.2020.138668. PubMed DOI
Sartore L., Schettini E., De Palma L., Brunetti G., Cocozza C., Vox G. Effect of hydrolyzed protein-based mulching coatings on the soil properties and productivity in a tunnel greenhouse crop system. Sci. Total Environ. 2018;645:1221–1229. doi: 10.1016/j.scitotenv.2018.07.259. PubMed DOI
Weng Y.-X., Jin Y., Meng Q.-Y., Wang L., Zhang M., Wang Y. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 2013;32:918–926. doi: 10.1016/j.polymertesting.2013.05.001. DOI
Wang J., Wang H., Chen E., Chen Y., Wu T. Enhanced Photodegradation Stability in Layered Zinc Phenylphosphonate. Polymers. 2020;12:1968. doi: 10.3390/polym12091968. PubMed DOI PMC
Pietrosanto A., Scarfato P., Di Maio L., Nobile M.R., Incarnato L. Evaluation of the Suitability of Poly(Lactide)/Poly(Butylene-Adipate-co-Terephthalate) Blown Films for Chilled and Frozen Food Packaging Applications. Polymers. 2020;12:804. doi: 10.3390/polym12040804. PubMed DOI PMC
Witt U., Müller R.-J., Deckwer W.-D. Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. J. Environ. Polym. Degrad. 1997;5:81–89. doi: 10.1007/BF02763591. DOI
Müller R.-J., Kleeberg I., Deckwer W.-D. Biodegradation of polyesters containing aromatic constituents. J. Biotechnol. 2001;86:87–95. doi: 10.1016/S0168-1656(00)00407-7. PubMed DOI
Muroi F., Tachibana Y., Kobayashi Y., Sakurai T., Kasuya K.-I. Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polym. Degrad. Stab. 2016;129:338–346. doi: 10.1016/j.polymdegradstab.2016.05.018. DOI
Sangroniz A., González A., Martin L., Irusta L., Iriarte M., Etxeberria A. Miscibility and degradation of polymer blends based on biodegradable poly(butylene adipate-co-terephthalate) Polym. Degrad. Stab. 2018;151:25–35. doi: 10.1016/j.polymdegradstab.2018.01.023. DOI
Morro A., Catalina F., Sánchez-León E., Abrusci C. Photodegradation and Biodegradation under Thermophile Conditions of Mulching Films Based on Poly(Butylene Adipate-co-Terephthalate) and Its Blend with Poly(Lactic Acid) J. Polym. Environ. 2018;27:352–363. doi: 10.1007/s10924-018-1350-0. DOI
Stloukal P., Verney V., Commereuc S., Rychly J., Matisova-Rychlá L., Pis V., Koutny M. Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere. 2012;88:1214–1219. doi: 10.1016/j.chemosphere.2012.03.072. PubMed DOI
Kijchavengkul T., Auras R., Rubino M., Ngouajio M., Fernandez R.T. Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions. Chemosphere. 2008;71:1607–1616. doi: 10.1016/j.chemosphere.2008.01.037. PubMed DOI
Ahmed T., Shahid M., Azeem F., Rasul I., Shah A.A., Noman M., Hameed A., Manzoor N., Manzoor I., Muhammad S. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. 2018;25:7287–7298. doi: 10.1007/s11356-018-1234-9. PubMed DOI
Kleeberg I., Welzel K., Vandenheuvel J., Müller R.-J., Deckwer W.-D. Characterization of a New Extracellular Hydrolase fromThermobifida fuscaDegrading Aliphatic−Aromatic Copolyesters. Biomacromolecules. 2005;6:262–270. doi: 10.1021/bm049582t. PubMed DOI
Witt U., Einig T., Yamamoto M., Kleeberg I., Deckwer W.-D., Müller R.-J. Biodegradation of aliphatic–aromatic copolyesters: Evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere. 2001;44:289–299. doi: 10.1016/S0045-6535(00)00162-4. PubMed DOI
Perz V., Bleymaier K., Sinkel C., Kueper U., Bonnekessel M., Ribitsch D., Guebitz G.M. Substrate specificities of cutinases on aliphatic–aromatic polyesters and on their model substrates. New Biotechnol. 2016;33:295–304. doi: 10.1016/j.nbt.2015.11.004. PubMed DOI
Kawai F., Oda M., Tamashiro T., Waku T., Tanaka N., Yamamoto M., Mizushima H., Miyakawa T., Tanokura M. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl. Microbiol. Biotechnol. 2014;98:10053–10064. doi: 10.1007/s00253-014-5860-y. PubMed DOI
Thumarat U., Nakamura R., Kawabata T., Suzuki H., Kawai F. Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Appl. Microbiol. Biotechnol. 2011;95:419–430. doi: 10.1007/s00253-011-3781-6. PubMed DOI
Kleeberg I., Hetz C., Kroppenstedt R.M., Müller R.-J., Deckwer W.-D. Biodegradation of Aliphatic-Aromatic Copolyesters by Thermomonospora fusca and Other Thermophilic Compost Isolates. Appl. Environ. Microbiol. 1998;64:1731–1735. doi: 10.1128/AEM.64.5.1731-1735.1998. PubMed DOI PMC
Muroi F., Tachibana Y., Soulenthone P., Yamamoto K., Mizuno T., Sakurai T., Kobayashi Y., Kasuya K.-I. Characterization of a poly(butylene adipate- co -terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus. Polym. Degrad. Stab. 2017;137:11–22. doi: 10.1016/j.polymdegradstab.2017.01.006. DOI
Tan F.T., Cooper D.G., Marić M., Nicell J.A. Biodegradation of a synthetic co-polyester by aerobic mesophilic microorganisms. Polym. Degrad. Stab. 2008;93:1479–1485. doi: 10.1016/j.polymdegradstab.2008.05.005. DOI
Kasuya K.-I., Ishii N., Inoue Y., Yazawa K., Tagaya T., Yotsumoto T., Kazahaya J.-I., Nagai D. Characterization of a mesophilic aliphatic–aromatic copolyester-degrading fungus. Polym. Degrad. Stab. 2009;94:1190–1196. doi: 10.1016/j.polymdegradstab.2009.04.013. DOI
Boonmee J., Kositanont C., Leejarkpai T. Biodegradation of poly(Lactic acid), poly(hydroxybutyrate-co-hydroxyvalerate), poly(butylene succinate) and poly(butylene adipate-co-terephthalate) under anaerobic and oxygen limited thermophilic conditions. Environ. Asia. 2016;9:107–115. doi: 10.14456/ea.1473.13. DOI
Witt U., Müller R.-J., Deckwer W.-D. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties. J. Environ. Polym. Degrad. 1995;3:215–223. doi: 10.1007/BF02068676. DOI
Shah A.A., Eguchi T., Mayumi D., Kato S., Shintani N., Kamini N.R., Nakajima-Kambe T. Purification and properties of novel aliphatic-aromatic co-polyesters degrading enzymes from newly isolated Roseateles depolymerans strain TB-87. Polym. Degrad. Stab. 2013;98:609–618. doi: 10.1016/j.polymdegradstab.2012.11.013. DOI
Perz V., Hromic A., Baumschlager A., Steinkellner G., Pavkov-Keller T., Gruber K., Bleymaier K., Zitzenbacher S., Zankel A., Mayrhofer C., et al. An Esterase from Anaerobic Clostridium hathewayi Can Hydrolyze Aliphatic–Aromatic Polyesters. Environ. Sci. Technol. 2016;50:2899–2907. doi: 10.1021/acs.est.5b04346. PubMed DOI
Saadi Z., Cesar G., Bewa H., Benguigui L. Fungal Degradation of Poly(Butylene Adipate-Co-Terephthalate) in Soil and in Compost. J. Polym. Environ. 2013;21:893–901. doi: 10.1007/s10924-013-0582-2. DOI
Marten E., Müller R.-J., Deckwer W.-D. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polym. Degrad. Stab. 2005;88:371–381. doi: 10.1016/j.polymdegradstab.2004.12.001. DOI
Šerá J., Stloukal P., Jančová P., Verney V., Pekařová S., Koutny M. Accelerated Biodegradation of Agriculture Film Based on Aromatic–Aliphatic Copolyester in Soil under Mesophilic Conditions. J. Agric. Food Chem. 2016;64:5653–5661. doi: 10.1021/acs.jafc.6b01786. PubMed DOI
Seligra P.G., Moura L.E., Famá L., Druzian J.I., Goyanes S. Influence of incorporation of starch nanoparticles in PBAT/TPS composite films. Polym. Int. 2016;65:938–945. doi: 10.1002/pi.5127. DOI
Asante P., Armstrong G.W., Adamowicz W.L. Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter. J. For. Econ. 2011;17:3–17. doi: 10.1016/j.jfe.2010.07.001. DOI
Neilson J.W., Jordan F.L., Maier R.M. Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis. J. Microbiol. Methods. 2013;92:256–263. doi: 10.1016/j.mimet.2012.12.021. PubMed DOI PMC
Waterhouse A.M., Procter J.B., Martin D.M.A., Clamp M., Barton G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC
Jones R.J.A., Houšková B., Bullock P., Montanarella L., editors. Soil Resources of Europe. 2nd ed. Office for Official Publications of the European Communities; Luxembourg: 2005. 420p European Soil Bureau Research Report No. 9.
Banerjee S., Baah-Acheamfour M., Carlyle C.N., Bissett A., Richardson A.E., Siddique T., Bork E.W., Chang S.X. Determinants of bacterial communities in Canadian agroforestry systems. Environ. Microbiol. 2015;18:1805–1816. doi: 10.1111/1462-2920.12986. PubMed DOI
Tawakaltu A.-A., Egwim E.C., Ochigbo S.S., Ossai P.C. Effect of Acetic Acid and Citric Acid Modification on Biodegradability of Cassava starch Nanocomposite Films. J. Mater. Sci. Eng. B. 2015;5:372–379. doi: 10.17265/2161-6221/2015.9-10.005. DOI
Ivanič F., Kováčová M., Chodák I. The effect of plasticizer selection on properties of blends poly(butylene adipate-co-terephthalate) with thermoplastic starch. Eur. Polym. J. 2019;116:99–105. doi: 10.1016/j.eurpolymj.2019.03.042. DOI
Uchida H., Nakajima-Kambe T., Shigeno-Akutsu Y., Nakahara T., Nomura N., Tokiwa Y. Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS Microbiol. Lett. 2000;189:25–29. doi: 10.1111/j.1574-6968.2000.tb09201.x. PubMed DOI
Weisburg W.G., Barns S.M., A Pelletier D., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/JB.173.2.697-703.1991. PubMed DOI PMC
Muyzer G., De Waal E.C., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993;59:695–700. doi: 10.1128/AEM.59.3.695-700.1993. PubMed DOI PMC
Husárová L., Pekařová S., Stloukal P., Kucharzcyk P., Verney V., Commereuc S., Ramone A., Koutny M. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid) Int. J. Biol. Macromol. 2014;71:155–162. doi: 10.1016/j.ijbiomac.2014.04.050. PubMed DOI
Das M., Royer T.V., Leff L.G. Diversity of Fungi, Bacteria, and Actinomycetes on Leaves Decomposing in a Stream. Appl. Environ. Microbiol. 2006;73:756–767. doi: 10.1128/AEM.01170-06. PubMed DOI PMC
Větrovský T., Baldrian P., Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
McMurdie P.J., Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC