Dung-visiting beetle diversity is mainly affected by land use, while community specialization is driven by climate

. 2022 Oct ; 12 (10) : e9386. [epub] 20221008

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36248674

Dung beetles are important actors in the self-regulation of ecosystems by driving nutrient cycling, bioturbation, and pest suppression. Urbanization and the sprawl of agricultural areas, however, destroy natural habitats and may threaten dung beetle diversity. In addition, climate change may cause shifts in geographical distribution and community composition. We used a space-for-time approach to test the effects of land use and climate on α-diversity, local community specialization (H 2') on dung resources, and γ-diversity of dung-visiting beetles. For this, we used pitfall traps baited with four different dung types at 115 study sites, distributed over a spatial extent of 300 km × 300 km and 1000 m in elevation. Study sites were established in four local land-use types: forests, grasslands, arable sites, and settlements, embedded in near-natural, agricultural, or urban landscapes. Our results show that abundance and species density of dung-visiting beetles were negatively affected by agricultural land use at both spatial scales, whereas γ-diversity at the local scale was negatively affected by settlements and on a landscape scale equally by agricultural and urban land use. Increasing precipitation diminished dung-visiting beetle abundance, and higher temperatures reduced community specialization on dung types and γ-diversity. These results indicate that intensive land use and high temperatures may cause a loss in dung-visiting beetle diversity and alter community networks. A decrease in dung-visiting beetle diversity may disturb decomposition processes at both local and landscape scales and alter ecosystem functioning, which may lead to drastic ecological and economic damage.

AgBioResearch and Ecology Evolution and Behavior Program Department of Entomology Michigan State University East Lansing Michigan USA

AgBioResearch and Ecology Evolution and Behavior Program Department of Osteopathic Specialties Michigan State University East Lansing Michigan USA

Chair of Restoration Ecology School of Life Sciences Technical University of Munich Freising Germany

Department of Animal Ecology and Tropical Biology Biocenter Julius Maximilians University Würzburg Würzburg Germany

Department of Conservation and Research Bavarian Forest National Park Grafenau Germany

Department of Conservation Biology Goethe University Frankfurt Frankfurt am Main Germany

Department of Ecology Faculty of Environmental Sciences Czech University of Life Sciences Prague Praha Suchdol Czech Republic

Department of Zoology Faculty of Science Charles University Praha 2 Czech Republic

Field Station Fabrikschleichach Department of Animal Ecology and Tropical Biology Julius Maximilians University Würzburg Rauhenebrach Germany

Institute of Ecology and Evolution and Field Station Schapen University of Veterinary Medicine Hannover Hannover Germany

Institute of Ecology and Landscape Weihenstephan Triesdorf University of Applied Sciences Freising Germany

Institute of Geography University of Augsburg Augsburg Germany

Professorship of Ecological Services Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany

TUM School of Life Sciences Ecoclimatology Technical University of Munich Freising Germany

Zobrazit více v PubMed

Ambrožová, L. , Sládeček, F. X. J. , Zítek, T. , Perlík, M. , Kozel, P. , Jirků, M. , & Čížek, L. (2021). Lasting decrease in functionality and richness: Effects of ivermectin use on dung beetle communities. Agriculture, Ecosystems & Environment, 321, 107634. 10.1016/j.agee.2021.107634 DOI

Anderson, J. M. , & Coe, M. J. (1974). Decomposition of elephant dung in an arid, tropical environment. Oecologia, 14, 111–125. PubMed

Angilletta, M. J., Jr. (2009). Adaptation to anthropogenic climate change. In M. J. Angilletta, Jr. (Ed.), Thermal adaptation: A theoretical and empirical synthesis (pp. 214–237). Oxford University Press.

Assing, V. , & Schülke, M. (2012). Die Käfer Mitteleuropas / begr. von Heinz Freude … Fortgef. von Bernhard Klausnitzer: Bd. 4. Staphylinidae (exklusive Aleocharinae, Pselaphinae und Scydmaeninae) (2. Aufl.). Spektrum Akad. Verl.

Barton, P. S. , & Bump, J. K. (2019). Carrion decomposition. In Olea P. P., Mateo‐Tomás P., & Sánchez‐Zapata J. A. (Eds.), Wildlife research monographs. Carrion ecology and management (Vol. 2, pp. 101–124). Springer International Publishing.

Beynon, S. A. , Mann, D. J. , Slade, E. M. , & Lewis, O. T. (2012). Species‐rich dung beetle communities buffer ecosystem services in perturbed agro‐ecosystems. Journal of Applied Ecology, 49(6), 1365–1372. 10.1111/j.1365-2664.2012.02210.x DOI

Bjornstad, O. N. , & Falck, W. (2001). Nonparametric spatial covariance functions: Estimation and testing. Environmental and Ecological Statistics, 8(1), 53–70. 10.1023/A:1009601932481 DOI

Blüthgen, N. (2010). Why network analysis is often disconnected from community ecology: A critique and an ecologist's guide. Basic and Applied Ecology, 11(3), 185–195. 10.1016/j.baae.2010.01.001 DOI

Blüthgen, N. , Menzel, F. , & Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology, 6, 9. 10.1186/1472-6785-6-9 PubMed DOI PMC

Böhme, J. , & Lucht, W. (Eds.). (2005). Die Käfer Mitteleuropas (2nd ed.). Elsevier Spektrum Akad. Verl.

Buse, J. , Hoenselaar, G. , Langenbach, F. , Schleicher, P. , Twietmeyer, S. , Popa, F. , & Heurich, M. (2021). Dung beetle richness is positively affected by the density of wild ungulate populations in forests. Biodiversity and Conservation, 30(11), 3115–3131. 10.1007/s10531-021-02238-z DOI

Buse, J. , Šlachta, M. , Sladecek, F. X. , Pung, M. , Wagner, T. , & Entling, M. H. (2015). Relative importance of pasture size and grazing continuity for the long‐term conservation of European dung beetles. Biological Conservation, 187, 112–119. 10.1016/j.biocon.2015.04.011 DOI

Carpaneto, G. M. , Mazziotta, A. , & Piattella, E. (2005). Changes in food resources and conservation of scarab beetles: From sheep to dog dung in a green urban area of Rome (Coleoptera, Scarabaeoidea). Biological Conservation, 123(4), 547–556. 10.1016/j.biocon.2004.12.007 DOI

Carpaneto, G. M. , Mazziotta, A. , & Valerio, L. (2007). Inferring species decline from collection records: Roller dung beetles in Italy (Coleoptera, Scarabaeidae). Diversity and Distributions, 13(6), 903–919. 10.1111/j.1472-4642.2007.00397.x DOI

Castle, M. E. , & MacDaid, E. (1972). The decomposition of cattle dung and its effect on pasture. Grass and Forage Science, 27, 133–137.

Chao, A. , Chiu, C.‐H. , & Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45(1), 297–324. 10.1146/annurev-ecolsys-120213-091540 DOI

Chao, A. , Gotelli, N. J. , Hsieh, T. C. , Sander, E. L. , Ma, K. H. , Colwell, R. K. , & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. 10.1890/13-0133.1 DOI

Chiu, C.‐H. , Jost, L. , & Chao, A. (2014). Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecological Monographs, 84(1), 21–44. 10.1890/12-0960.1 DOI

Classen, A. , Eardley, C. D. , Hemp, A. , Peters, M. K. , Peters, R. S. , Ssymank, A. , & Steffan‐Dewenter, I. (2020). Specialization of plant‐pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecology and Evolution, 10(4), 2182–2195. 10.1002/ece3.6056 PubMed DOI PMC

Collins, M. , Knutti, R. , Arblaster, J. , Dufresne, J.‐L. , Fichefet, T. , Friedlingstein, P. , Gao, X. , Gutowski, W. J. , Johns, T. , Krinner, G. , Shongwe, M. , Tebaldi, C. , Weaver, A. J. , & Wehner, M. (2013). Long‐term climate change: Projections, commitments and irreversibility. In Stocker T. F., Qin D., Plattner G.‐K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., & Midgley P. M. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Damborsky, M. P. , Alvarez Bohle, M. C. , Ibarra Polesel, M. G. , Porcel, E. A. , & Fontana, J. L. (2015). Spatial and temporal variation of dung beetle assemblages in a fragmented landscape at eastern humid Chaco. Neotropical Entomology, 44(1), 30–39. 10.1007/s13744-014-0257-2 PubMed DOI

Davies, K. F. , Margules, C. R. , & Lawrence, J. F. (2004). A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology, 85(1), 265–271. 10.1890/03-0110 DOI

Davis, T. S. , Crippen, T. L. , Hofstetter, R. W. , & Tomberlin, J. K. (2013). Microbial volatile emissions as insect semiochemicals. Journal of Chemical Ecology, 39(7), 840–859. 10.1007/s10886-013-0306-z PubMed DOI

Dormann, C. F. , Frund, J. , Blüthgen, N. , & Gruber, B. (2009). Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2(1), 7–24. 10.2174/1874213000902010007 DOI

Ellison, A. M. (2010). Partitioning diversity. Ecology, 91(7), 1962–1963. 10.1890/09-1692.1 PubMed DOI

Englmeier, J. , Mitesser, O. , Benbow, M. E. , Hothorn, T. , von Hoermann, C. , Benjamin, C. , Fricke, U. , Ganuza, C. , Haensel, M. , Redlich, S. , Riebl, R. , Rojas Botero, S. , Rummler, T. , Steffan‐Dewenter, I. , Stengel, E. , Tobisch, C. , Uhler, J. , Uphus, L. , Zhang, J. , & Müller, J. (2022). Diverse effects of climate, land use, and insects on dung and carrion decomposition. Ecosystems. Advance online publication. 10.1007/s10021-022-00764-7 DOI

Errouissi, F. , Haloti, S. , Jay‐Robert, P. , Janati‐idrissi, A. , & Lumaret, J.‐P. (2004). Effects of the attractiveness for dung beetles of dung pat origin and size along a climatic gradient. Environmental Entomology, 33(1), 45–53. 10.1603/0046-225X-33.1.45 DOI

Evans, K. S. , Mamo, M. , Wingeyer, A. , Schacht, W. H. , Eskridge, K. M. , Bradshaw, J. , & Ginting, D. (2019). Soil Fauna accelerate dung pat decomposition and nutrient cycling into grassland soil. Rangeland Ecology & Management, 72(4), 667–677. 10.1016/j.rama.2019.01.008 DOI

Frank, K. , Brückner, A. , Hilpert, A. , Heethoff, M. , & Blüthgen, N. (2017). Nutrient quality of vertebrate dung as a diet for dung beetles. Scientific Reports, 7(1), 12141. 10.1038/s41598-017-12265-y PubMed DOI PMC

Frank, K. , Hülsmann, M. , Assmann, T. , Schmitt, T. , & Blüthgen, N. (2017). Land use affects dung beetle communities and their ecosystem service in forests and grasslands. Agriculture, Ecosystems & Environment, 243, 114–122. 10.1016/j.agee.2017.04.010 DOI

Frank, K. , Krell, F.‐T. , Slade, E. M. , Raine, E. H. , Chiew, L. Y. , Schmitt, T. , Vairappan, C. S. , Walter, P. , & Blüthgen, N. (2018). Global dung webs: High trophic generalism of dung beetles along the latitudinal diversity gradient. Ecology Letters, 21(8), 1229–1236. 10.1111/ele.13095 PubMed DOI

Frazier, M. R. , Huey, R. B. , & Berrigan, D. (2006). Thermodynamics constrains the evolution of insect population growth rates: “Warmer is better”. The American Naturalist, 168(4), 512–520. 10.1086/506977 PubMed DOI

Gardner, T. A. , Hernández, M. I. , Barlow, J. , & Peres, C. A. (2008). Understanding the biodiversity consequences of habitat change: The value of secondary and plantation forests for neotropical dung beetles. Journal of Applied Ecology, 45(3), 883–893. 10.1111/j.1365-2664.2008.01454.x DOI

Gebert, F. , Steffan‐Dewenter, I. , Moretto, P. , & Peters, M. K. (2020). Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro. Journal of Biogeography, 47(2), 371–381. 10.1111/jbi.13710 DOI

Gotelli, N. J. , & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391. 10.1046/j.1461-0248.2001.00230.x DOI

Graham, R. W. , & Grimm, E. C. (1990). Effects of global climate change on the patterns of terrestrial biological communities. Trends in Ecology & Evolution, 5(9), 289–292. 10.1016/0169-5347(90)90083-P PubMed DOI

Hanski, I. , & Cambefort, Y. (1991). Dung beetle ecology. Princeton University press.

Harris, J. E. , Rodenhouse, N. L. , & Holmes, R. T. (2019). Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming. Biological Conservation, 240, 108219. 10.1016/j.biocon.2019.108219 DOI

Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432. 10.2307/1934352 DOI

Hothorn, T. , Bretz, F. , & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. 10.1002/bimj.200810425 PubMed DOI

Hsieh, T. C. , Ma, K. H. , & Chao, A. (2020). iNEXT (Version 2.0.20) [computer software] iNEXT: iNterpolation and EXTrapolation for species diversity. R package.

Iida, T. , Soga, M. , & Koike, S. (2016). Effects of an increase in population of sika deer on beetle communities in deciduous forests. ZooKeys, 625, 67–85. 10.3897/zookeys.625.9116 PubMed DOI PMC

Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375. 10.1111/j.2006.0030-1299.14714.x DOI

Juillet, J. A. (1964). Influence of weather on flight activity of parasitic hymenoptera. Canadian Journal of Zoology, 42(6), 1133–1141. 10.1139/z64-110 DOI

Kaspar, F. , Müller‐Westermeier, G. , Penda, E. , Mächel, H. , Zimmermann, K. , Kaiser‐Weiss, A. , & Deutschländer, T. (2013). Monitoring of climate change in Germany – Data, products and services of Germany's National Climate Data Centre. Advances in Science and Research, 10(1), 99–106. 10.5194/asr-10-99-2013 DOI

Korasaki, V. , Lopes, J. , Gardner Brown, G. , & Louzada, J. (2013). Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity. Insect Science, 20(3), 393–406. 10.1111/j.1744-7917.2012.01509.x PubMed DOI

Kuemmerle, T. , Radeloff, V. C. , Perzanowski, K. , Kozlo, P. , Sipko, T. , Khoyetskyy, P. , Bashta, A.‐T. , Chikurova, E. , Parnikoza, I. , Baskin, L. , Angelstam, P. , & Waller, D. M. (2011). Predicting potential European bison habitat across its former range. Ecological Applications, 21(3), 830–843. 10.1890/10-0073.1 PubMed DOI

Le, P. D. , Aarnink, A. J. A. , Ogink, N. W. M. , Becker, P. M. , & Verstegen, M. W. A. (2005). Odour from animal production facilities: Its relationship to diet. Nutrition Research Reviews, 18(1), 3–30. 10.1079/NRR200592 PubMed DOI

Losey, J. E. , & Vaughan, M. (2006). The economic value of ecological services provided by insects. Bioscience, 56(4), 311. 10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2 DOI

McGeoch, M. A. , van Rensburg, B. J. , & Botes, A. (2002). The verification and application of bioindicators: A case study of dung beetles in a savanna ecosystem. Journal of Applied Ecology, 39(4), 661–672. 10.1046/j.1365-2664.2002.00743.x DOI

McKane, R. B. , Johnson, L. C. , Shaver, G. R. , Nadelhoffer, K. J. , Rastetter, E. B. , Fry, B. , Giblin, A. E. , Kielland, K. , Kwiatkowski, B. L. , Laundre, J. A. , & Murray, G. (2002). Resource‐based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 415(6867), 68–71. 10.1038/415068a PubMed DOI

Menéndez, R. , González‐Megías, A. , Jay‐Robert, P. , & Marquéz‐Ferrando, R. (2014). Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges. Global Ecology and Biogeography, 23(6), 646–657. 10.1111/geb.12142 DOI

Milotić, T. , Baltzinger, C. , Eichberg, C. , Eycott, A. E. , Heurich, M. , Müller, J. , Noriega, J. A. , Menendez, R. , Stadler, J. , Ádám, R. , Bargmann, T. , Bilger, I. , Buse, J. , Calatayud, J. , Ciubuc, C. , Boros, G. , Jay‐Robert, P. , Kruus, M. , Merivee, E. , … Hoffmann, M. (2019). Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. Journal of Biogeography, 46(1), 70–82. 10.1111/jbi.13452 DOI

Neff, F. , Brändle, M. , Ambarlı, D. , Ammer, C. , Bauhus, J. , Boch, S. , Hölzel, N. , Klaus, V. H. , Kleinebecker, T. , Prati, D. , Schall, P. , Schäfer, D. , Schulze, E.‐D. , Seibold, S. , Simons, N. K. , Weisser, W. W. , Pellissier, L. , & Gossner, M. M. (2021). Changes in plant‐herbivore network structure and robustness along land‐use intensity gradients in grasslands and forests. Science Advances, 7(20). 10.1126/sciadv.abf3985 PubMed DOI PMC

Newman, M. E. J. , & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 69(2 Pt 2), 26113. 10.1103/PhysRevE.69.026113 PubMed DOI

Nichols, E. , Spector, S. , Louzada, J. , Larsen, T. , Amezquita, S. , & Favila, M. E. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141(6), 1461–1474. 10.1016/j.biocon.2008.04.011 DOI

Oksanen, J. , Blanchet, F. G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , Minchin, P. R. , O'Hara, R. B. , Simpson, G. L. , Solymos, P. , Stevens, M. H. H. , Szoecs, E. , & Wagner, H. (2020). vegan: Community ecology package (version 2.5‐7.) [computer software]. https://CRAN.R‐project.org/package=vegan

Pecenka, J. R. , & Lundgren, J. G. (2018). The importance of dung beetles and arthropod communities on degradation of cattle dung pats in eastern South Dakota. PeerJ, 6, e5220. 10.7717/peerj.5220 PubMed DOI PMC

R Core Team . (2021). R: A language and environment for statistical computing [computer software]. R Foundation for Statistical Computing. https://www.R‐project.org/

Ramírez‐Restrepo, L. , & Halffter, G. (2016). Copro‐necrophagous beetles (Coleoptera: Scarabaeinae) in urban areas: A global review. Urban Ecosystem, 19(3), 1179–1195. 10.1007/s11252-016-0536-2 DOI

Redlich, S. , Zhang, J. , Benjamin, C. , Dhillon, M. S. , Englmeier, J. , Ewald, J. , Fricke, U. , Ganuza, C. , Haensel, M. , Hovestadt, T. , Kollmann, J. , Koellner, T. , Kübert‐Flock, C. , Kunstmann, H. , Menzel, A. , Moning, C. , Peters, W. , Riebl, R. , Rummler, T. , … Steffan‐Dewenter, I. (2022). Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi‐scale experimental design. Methods in Ecology and Evolution, 13(2), 514–527. 10.1111/2041-210X.13759 DOI

Romero‐Alcaraz, E. , & Ávila, J. M. (2000). Effect of elevation and type of habitat on the abundance and diversity of Scarabaeoid dung beetle (Scarabaeoidea) assemblages in a Mediterranean area from Southern Iberian Peninsula. Zoological Studies, 39(4), 351–359.

Sánchez‐Bayo, F. , & Wyckhuys, K. A. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8–27. 10.1016/j.biocon.2019.01.020 DOI

Seto, K. C. , Fragkias, M. , Güneralp, B. , & Reilly, M. K. (2011). A meta‐analysis of global urban land expansion. PLoS One, 6(8), e23777. 10.1371/journal.pone.0023777 PubMed DOI PMC

Šlachta, M. (2013). Coprophagous beetle community (Coleoptera: Scarabaeidae, Geotrupidae, Hydrophilidae) in two cattle pastures in South Bohemia. Journal of Agrobiology, 30(1), 21–31. 10.2478/agro-2013-0003 DOI

Sladecek, F. X. J. , Dötterl, S. , Schäffler, I. , Segar, S. T. , & Konvicka, M. (2021). Succession of dung‐inhabiting beetles and flies reflects the succession of dung‐emitted volatile compounds. Journal of Chemical Ecology, 47(4–5), 433–443. 10.1007/s10886-021-01266-x PubMed DOI

Sowig, P. (1995). Habitat selection and offspring survival rate in three paracoprid dung beetles: The influence of soil type and soil moisture. Ecography, 18(2), 147–154. 10.1111/j.1600-0587.1995.tb00335.x DOI

Spiesman, B. J. , & Inouye, B. D. (2013). Habitat loss alters the architecture of plant‐‐pollinator interaction networks. Ecology, 94(12), 2688–2696. 10.1890/13-0977.1 PubMed DOI

Svenning, J.‐C. (2002). A review of natural vegetation openness in north‐western Europe. Biological Conservation, 104(2), 133–148. 10.1016/S0006-3207(01)00162-8 DOI

Venables, W. N. , & Ripley, B. D. (2007). Modern applied statistics with S (4th ed., corr. print). Statistics and computing. Springer.

von Hoermann, C. , Ruther, J. , & Ayasse, M. (2016). Volatile organic compounds of decaying piglet cadavers perceived by Nicrophorus vespilloides. Journal of Chemical Ecology, 42(8), 756–767. 10.1007/s10886-016-0719-6 PubMed DOI

von Hoermann, C. , Weithmann, S. , Deißler, M. , Ayasse, M. , & Steiger, S. (2020). Forest habitat parameters influence abundance and diversity of cadaver‐visiting dung beetles in Central Europe. Royal Society Open Science, 7(3), 191722. 10.1098/rsos.191722 PubMed DOI PMC

Warren, R. , VanDerWal, J. , Price, J. , Welbergen, J. A. , Atkinson, I. , Ramirez‐Villegas, J. , Osborn, T. J. , Jarvis, A. , Shoo, L. P. , Williams, S. E. , & Lowe, J. (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3(7), 678–682. 10.1038/nclimate1887 DOI

Weithmann, S. , von Hoermann, C. , Schmitt, T. , Steiger, S. , & Ayasse, M. (2020). The attraction of the dung beetle PubMed DOI PMC

Williams, R. S. , Marbert, B. S. , Fisk, M. C. , & Hanson, P. J. (2014). Ground‐dwelling beetle responses to long‐term precipitation alterations in a Hardwood forest. Southeastern Naturalist, 13(1), 138–155. 10.1656/058.013.0114 DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.6hdr7sr2c

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...