Succession of Dung-Inhabiting Beetles and Flies Reflects the Succession of Dung-Emitted Volatile Compounds

. 2021 May ; 47 (4-5) : 433-443. [epub] 20210408

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33830431

Grantová podpora
15-24571S Grant Agency of the Czech Republic
(RVO//:60077344) Institute of Entomology, Biology Centre of the Czech Academy of Science
(152/2016/P) Grant Agency of University of South Bohemia
(MSM200961902) Czech Academy of Sciences
CZ.1.07/2.3.00/30.0006 Univ. of South Bohemia Postdoc project

Odkazy

PubMed 33830431
DOI 10.1007/s10886-021-01266-x
PII: 10.1007/s10886-021-01266-x
Knihovny.cz E-zdroje

Chemical cues, such as volatile organic compounds (VOCs), are often essential for insects to locate food. Relative to the volume of studies on the role of VOCs in insect-plant relationships, the role of VOCs emitted by dung and carrion in mediating the behavior of insect decomposers is understudied. Such relationships may provide a mechanistic understanding of the temporal axis of community assembly processes in decomposing insect communities. We focused on the temporal succession of volatiles released by cow dung pats and the potential influence on dung-inhabiting insects. Using gas chromatography/mass spectrometry we identified and quantified VOCs released from dung 1-h, and 1, 2 3, 5, and 7 d-old. We then related changes in VOCs to successional patterns of dung-inhabiting beetles and flies. We detected 54 VOCs which could be assigned to two successional groups, with chemical turnover in dung changing around day 2. The early successional group consisted primarily of aliphatic alcohols and phenols, and the late one of aliphatic esters, nitrogen- and sulfur-bearing compounds. Flies were predominately associated with the early successional group, mainly with 1-butanol. Beetles were associated predominately with the late-successional group, mainly with dimethyl trisulfide. This association between insect and chemical successional patterns supports the idea that habitat filtering drives the community assembly of dung-inhabiting insects on an aging resource. Moreover, the affinity of both insect groups to specific VOC groups provides a mechanistic explanation for the predictability of successional patterns found in dung-inhabiting insect communities.

Zobrazit více v PubMed

Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Streams

Balkenius A, Rosen W, Kelber A (2006) The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. J Comp Physiol 192:431–437. https://doi.org/10.1007/s00359-005-0081-6 DOI

Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1–49 DOI

Boumba VA, Ziavrou KS, Vougiouklakis T (2008) Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci Int 174:133–151. https://doi.org/10.1016/j.forsciint.2007.03.018 PubMed DOI

Burger BV, Petersen WGB, Weber WG, Munro ZM (2002) Semiochemicals of the Scarabaeinae. VII: Identification and synthesis of EAD-active constituents of abdominal sex attracting secretion of the male dung beetle, Kheper subaeneus. J Chem Ecol 28:2527–2539. https://doi.org/10.1023/A:1021440220329 PubMed DOI

de Mendonca F, Vilela E, Eiras A, Sant’Ana A (1999) Resposta de Cosmopolites sordidus (Germar) (Coleoptera, Curculionidae) aos voláteis da planta hospedeira e de adultos coespecíficos em olfatômetro. Rev Bras Zool 16:123–128

Dekeirsschieter J, Verheggen FJ, Gohy M, Hubrecht F, Bourguignon L, Lognay G, Haubruge E (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189:46–53. https://doi.org/10.1016/j.forsciint.2009.03.034 PubMed DOI

Dettner K, Schwinger G (1982) Defensive secretions of three oxytelinae rove beetles (Coleoptera: Staphylinidae). J Chem Ecol 8:1411–1420. https://doi.org/10.1007/BF01403104 PubMed DOI

Dötterl S, Jürgens A, Seifert K, Laube T, Weissbecker B, Schutz S (2006) Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol 169:707–718. https://doi.org/10.1111/j.1469-8137.2005.01509.x PubMed DOI

El-Sayed A (2018) The Pherobase: Database of Pheromones and Semiochemicals. http://www.pherobase.com

Erzinclioglu Z (1996) Blowflies. The Richmond Publishing Co, Slough

Etl F, Berger A, Weber A, Schönenberger J, Dötterl S (2016) Nocturnal plant bugs use cis-jasmone to locate inflorescences of an Araceae as feeding and matings site. J Chem Ecol 42:300–304. https://doi.org/10.1007/s10886-016-0688-9 PubMed DOI PMC

Finn J (2001) Ephemeral resource patches as model systems for diversity-function experiments. OIKOS 92:363–366 DOI

Forbes SL, Perrault KA (2014) Decomposition odour profiling in the air and soil surrounding vertebrate carrion. Plos One 9:ARTN e95107. https://doi.org/10.1371/journal.pone.0095107 DOI

Frank K, Bruckner A, Bluthgen N, Schmitt T (2018) In search of cues: dung beetle attraction and the significance of volatile composition of dung. Chemoecology 28:145–152. https://doi.org/10.1007/s00049-018-0266-4 DOI

Frederickx C, Dekeirsschieter J, Verheggen FJ, Haubruge E (2012) Responses of Lucilia sericata Meigen (Diptera: Calliphoridae) to cadaveric volatile organic compounds. J Forensic Sci 57:386–390. https://doi.org/10.1111/j.1556-4029.2011.02010.x PubMed DOI

Gittings T, Giller P (1997) Life history traits and resource utilisation in an assemblage of north temperate Aphodius dung beetles (Coleoptera: Scarabaeidae). Ecography 20:55–66 DOI

Gittings T, Giller P (1998) Resource quality and the colonisation and succession of coprophagous dung beetles. Ecography 21:581–592 DOI

Hammer O (1941) Biological and ecological investigations on flies associated with pasturing cattle and their excrement. Vidensk Medd Fra Dansk Naturh Foren 105:1–257

Hanski I, Koskela H (1977) Niche relations among dung-inhabiting beetles. Oecologia 28:203–231 DOI

Hartig F (2019) DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models

Heiduk A et al (2016) Ceropegia sandersonii Mimics Attacked Honeybees to Attract Kleptoparasitic Flies for Pollination. Curr Biol 26:2787–2793. https://doi.org/10.1016/j.cub.2016.07.085 PubMed DOI

Holter P (1979) Effect of dung-beetles (Aphodius spp) and earthworms on the disappearance of cattle dung. Oikos 32:393–402 DOI

Hulcr J, Ubik K, Vrkoc J (2006) The role of semiochemicals in tritrophic interactions between the spruce bark beetle Ips typographus, its predators and infested spruce. J Appl Entomol 130:275–283. https://doi.org/10.1111/j.1439-0418.2006.01069.x DOI

Huth A, Dettner K (1990) Defense chemicals from abdominal glands of 13 rove beetle species of subtribe Staphylinina (Coleoptera, Staphylinidae, Staphylininae). J Chem Ecol 16:2691–2711. https://doi.org/10.1007/Bf00988079 PubMed DOI

Jürgens A, Dötterl S, Meve U (2006) The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytol 172:452–468. https://doi.org/10.1111/j.1469-8137.2006.01845.x PubMed DOI

Jürgens A, Wee SL, Shuttleworth A, Johnson SD (2013) Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol Lett 16:1157–1167. https://doi.org/10.1111/ele.12152 PubMed DOI

Kadlec J, Mikatova S, Maslo P, Sipkova H, Sipek P, Sladecek FXJ (2019) Delaying insect access alters community composition on small carrion: a quantitative approach. Entomol Exp Appl 167:729–740. https://doi.org/10.1111/eea.12826 DOI

Kalinova B, Podskalska H, Ruzicka J, Hoskovec M (2009) Irresistible bouquet of death-how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften 96:889–899. https://doi.org/10.1007/s00114-009-0545-6 PubMed DOI

Karmakar A, Mukherjee A, Barik A (2016) Floral volatiles with colour cues from two cucurbitaceous plants causing attraction of Aulacophora foveicollis. Entomol Exp Appl 158:133–141. https://doi.org/10.1111/eea.12395 DOI

Keddy PA (1992) Assembly and response rules - 2 goals for predictive community ecology. J Veg Sci 3:157–164. https://doi.org/10.2307/3235676 DOI

Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599. https://doi.org/10.1111/1365-2435.12345 DOI

Krell FT (2007) Dung beetle sampling protocols. Denver Museum of Nature and Science

Laubach J, Taghizadeh-Toosi A, Gibbs SJ, Sherlock RR, Kelliher FM, Grover SPP (2013) Ammonia emissions from cattle urine and dung excreted on pasture. Biogeosciences 10:327–338. https://doi.org/10.5194/bg-10-327-2013 DOI

Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press

Marino P, Raguso R, Goffinet B (2009) The ecology and evolution of fly dispersed dung mosses (family Splachnaceae): manipulating insect behaviour through odour and visual cues. Symbiosis 47:61–76 DOI

Matuszewski S, Bajerlein D, Konwerski S, Szpila K (2011) Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: succession of carrion fauna. Forensic Sci Int 207:150–163 DOI

Midgley JJ, White JDM, Johnson SD, Bronner GN (2015) Faecal mimicry by seeds ensures dispersal by dung beetles. Nat Plants 1:Artn 15141. https://doi.org/10.1038/Nplants.2015.141 DOI

Milet-Pinheiro P, Ayasse M, Dötterl S (2015) Visual and olfactory floral cues of campanula (campanulaceae) and their significance for host recognition by an oligolectic bee pollinator. Plos One 10:ARTN e0128577. https://doi.org/10.1371/journal.pone.0128577 DOI

Mitchell TC, Dötterl S, Schaefer H (2015) Hawk-moth pollination and elaborate petals in Cucurbitaceae: The case of the Caribbean endemic Linnaeosicyos amara. Flora 216:50–56. https://doi.org/10.1016/j.flora.2015.08.004 DOI

Mohr CO (1943) Cattle droppings as ecological units. Ecol Monogr 13:275–298 DOI

Omura H, Honda K (2009) Behavioral and electroantennographic responsiveness of adult butterflies of six nymphalid species to food-derived volatiles. Chemoecology 19:227–234. https://doi.org/10.1007/s00049-009-0024-8 DOI

Paczkowski S, Nicke S, Ziegenhagen H, Schutz S (2015) Volatile emission of decomposing pig carcasses (Sus scrofa domesticus L.) as an indicator for the postmortem interval. J Forensic Sci 60:S130–S137. https://doi.org/10.1111/1556-4029.12638 PubMed DOI

Perez-Valera E, Kyselkova M, Ahmed E, Sladecek FXJ, Goberna M, Elhottova D (2019) Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Sci Rep-Uk 9:Artn 6760 DOI

Podskalska H, Ruzicka J, Hoskovec M, Salek M (2009) Use of infochemicals to attract carrion beetles into pitfall traps. Entomol Exp Appl 132:59–64. https://doi.org/10.1111/j.1570-7458.2009.00871.x DOI

Primante C, Dötterl S (2010) A Syrphid fly uses olfactory cues to find a non-yellow flower. J Chem Ecol 36:1207–1210. https://doi.org/10.1007/s10886-010-9871-6 PubMed DOI

Recinos-Aguilar YM, Garcia-Garcia MD, Malo EA, Cruz-Lopez L, Cruz-Esteban S, Rojas JC (2020) The succession of flies of forensic importance is influenced by volatiles organic compounds emitted during the first hours of decomposition of chicken remains. J Med Entomol 57:1411–1420. https://doi.org/10.1093/jme/tjaa064 PubMed DOI

Saito Y, Sato T, Nomoto K, Tsuji H (2018) Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. Fems Microbiol Ecol 94:ARTN fiy125. https://doi.org/10.1093/femsec/fiyD25 DOI

Sakai S, Inoue T (1999) A new pollination system: dung-beetle pollination discovered in Orchidantha inouei (Lowiaceae, Zingiberales) in Sarawak, Malaysia. Am J Bot 86:56–61. https://doi.org/10.2307/2656954 PubMed DOI

Segura DF, Viscarret MM, Ovruski SM, Cladera JL (2012) Response of the fruit fly parasitoid Diachasmimorpha longicaudata to host and host-habitat volatile cues. Entomol Exp Appl 143:164–176. https://doi.org/10.1111/j.1570-7458.2012.01246.x DOI

Schneider ER et al (2017) Molecular basis of tactile specialization in the duck bill. P Natl Acad Sci USA 114:13036–13041. https://doi.org/10.1073/pnas.1708793114 DOI

Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. https://doi.org/10.1016/j.tree.2004.09.003 DOI

Skidmore P (1991) Insects of the British cow-dung community. Field Studies Council

Slade E, Mann D, Villanueva J, Lewis O (2007) Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J Anim Ecol 76:1094–1104 DOI

Sladecek F, Dötterl S, Schäffler I, Segar S, Konvicka M (2018) Succession of dung-inhabiting beetles and flies reflects the succession of dung-emitted volatile compounds. https://doi.org/10.6084/m9.figshare.7039553.v1

Sladecek FXJ, Hrcek J, Klimes P, Konvicka M (2013) Interplay of succession and seasonality reflects resource utilization in an ephemeral habitat. Acta Oecol 46:17–24 DOI

Sladecek FXJ, Segar ST, Lee C, Wall R, Konvicka M (2017a) Temporal segregation between dung-inhabiting beetle and fly species. Plos One 12:e0170426. https://doi.org/10.1371/journal.pone.0170426

Sladecek FXJ, Sulakova H, Konvicka M (2017b) Temporal segregations in the surface community of an ephemeral habitat: Time separates the potential competitors of coprophilous. Diptera Entomol Sci 20:111–121. https://doi.org/10.1111/ens.12240 DOI

Stadler S, Desaulniers JP, Forbes SL (2015) Inter-year repeatability study of volatile organic compounds from surface decomposition of human analogues. Int J Legal Med 129:641–650. https://doi.org/10.1007/s00414-014-1024-y PubMed DOI

Stevenson BG, Dindal DL (1987) Functional ecology of coprophagous insects - a review. Pedobiologia 30:285–298

Team RC (2020) R: a language and environment for statistical computing. Vienna, Austria

Ter Braak CJF, Smilauer P (2012) Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power, Ithaca

Varma VS et al. (2018) Diet supplementation with pomegranate peel extract altered odorants emission from fresh and incubated Calves' feces front sustain food S 2 Unsp 33. https://doi.org/10.3389/Fsufs.2018.00033

von Hoermann C, Ruther J, Reibe S, Madea B, Ayasse M (2011) The importance of carcass volatiles as attractants for the hide beetle Dermestes maculatus (De Geer). Forensic Sci Int 212:173–179. https://doi.org/10.1016/j.forsciint.2011.06.009 DOI

von Hoermann C, Steiger S, Muller JK, Ayasse M (2013) Too fresh is unattractive! The attraction of newly emerged Nicrophorus vespilloides females to odour bouquets of large cadavers at various stages of decomposition. Plos One 8:ARTN e58524. https://doi.org/10.1371/journal.pone.0058524 DOI

Wassmer T (2014) Seasonal occurrence (phenology) of coprophilous beetles (Coleoptera: Scarabaeidae and Hydrophilidae) from cattle and sheep farms in southeastern Michigan, USA. Coleopts Bull 68:603–618 DOI

Weithmann S, von Hoermann C, Schmitt T, Steiger S, Ayasse M (2020) The attraction of the dung beetle Anoplotrupes stercorosus (Coleoptera: Geotrupidae) to volatiles from vertebrate cadavers insects 11. https://doi.org/10.3390/insects11080476

Whipple SD, Cavallaro MC, Hoback WW (2013) Immersion tolerance in dung beetles (Coleoptera: Scarabaeidae) differs among species but not behavioral groups. Coleopts Bull 67:257–263 DOI

Wu X, Sun S (2010) The roles of beetles and flies in yak dung removal in an alpine meadow of eastern Qinghai-Tibetan plateau. Ecoscience 17:146–155 DOI

Wurmitzer C, Bluthgen N, Krell FT, Maldonado B, Ocampo F, Muller JK, Schmitt T (2017) Attraction of dung beetles to herbivore dung and synthetic compounds in a comparative field study. Chemoecology 27:75–84. https://doi.org/10.1007/s00049-017-0232-6 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...