Epigenetic targeting of transposon relics: beating the dead horses of the genome?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu přehledy, časopisecké články, práce podpořená grantem
PubMed
36255200
PubMed Central
PMC9586680
DOI
10.1080/15592294.2021.2022066
Knihovny.cz E-zdroje
- Klíčová slova
- Transposable elements, adaptive epimutations, epigenetic silencing, gene regulation, host genome defence, recombination, transposable elements relics,
- MeSH
- epigeneze genetická MeSH
- metylace DNA MeSH
- molekulární evoluce MeSH
- transpozibilní elementy DNA * MeSH
- umlčování genů * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- transpozibilní elementy DNA * MeSH
Transposable elements (TEs) have been seen as selfish genetic elements that can propagate in a host genome. Their propagation success is however hindered by a combination of mechanisms such as mutations, selection, and their epigenetic silencing by the host genome. As a result, most copies of TEs in a given genome are dead relics: their sequence is too degenerated to allow any transposition. Nevertheless, these TE relics often, but not always, remain epigenetically silenced, and if not to prevent transposition anymore, one can wonder the reason for this phenomenon. The mere self-perpetuating loop inherent to epigenetic silencing could alone explain that even when inactive, TE copies remain silenced. Beyond this process, nevertheless, antagonistic selective forces are likely to act on TE relic silencing. Especially, without the benefit of preventing transposition, TE relic silencing may prove deleterious to the host fitness, suggesting that the maintenance of TE relic silencing is the result of a fine, and perhaps case-by-case, evolutionary trade-off between beneficial and deleterious effects. Ultimately, the release of TE relics silencing may provide a 'safe' ground for adaptive epimutations to arise. In this review, we provide an overview of these questions in both plants and animals.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Plant Experimental Biology Faculty of Science Charles University Prague Czech Republic
Institute of Botany Czech Academy of Sciences Pruhonice Czech Republic
Zobrazit více v PubMed
Bousios A, Gaut BS.. Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts. Curr Opin Plant Biol. 2016;30:123–133. PubMed
Cosby RL, Chang N-C, Feschotte C. Host–transposon interactions: conflict, cooperation, and cooption. Genes Dev. 2019;33:1098–1116. PubMed PMC
Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989;5:103–107. PubMed
Todorovska E. Retrotransposons and their role in plant—genome evolution. Biotechnol Biotechnol Equip. 2007;21:294–305.
Goodier JL. Restricting retrotransposons: a review. Mob DNA. 2016;7(16). 10.1186/s13100-016-0070-z. PubMed DOI PMC
Grandi N, Tramontano E. Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front Immunol. 2018;9:2039. PubMed PMC
Blumenstiel JP. Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation. Genes (Basel). 2019;10:336. PubMed PMC
Cogoni C, Macino G. Post-transcriptional gene silencing across kingdoms. Curr Opin Genet Dev. 2000;10:638–643. PubMed
Girard A, Hannon GJ. Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol. 2008;18:136–148. PubMed PMC
Cuerda-Gil D, Slotkin RK. Non-canonical RNA-directed DNA methylation. Nat Plants. 2016;2:16163. PubMed
Brennecke J, Aravin AA, Stark A, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128:1089–1103. PubMed
Weick E-M, A E. Miska, piRNAs: from biogenesis to function. Development. 2014;141:3458–3471. PubMed
Nandini VB. Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding. Mol Biol Rep. 2020;47:3155–3167. PubMed
Nuzhdin SV. Transposable elements and genome evolution. In: McDonald JF, editor. Georgia genetics review. Vol. 1. Dordrecht: Springer Netherlands; 2000. p. 129–137.
Zemach A, Kim MY, Hsieh P-H, et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell. 2013;153:193–205. PubMed PMC
Stroud H, Do T, Du J, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol. 2014;21:64–72. PubMed PMC
Wang Z, Baulcombe DC. Transposon age and non-CG methylation. Nat Commun. 2020;11:1221. PubMed PMC
Bousios A, Diez CM, Takuno S, et al. A role for palindromic structures in the cis-region of maize Sirevirus LTRs in transposable element evolution and host epigenetic response. Genome Res. 2016;26:226–237. PubMed PMC
Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science. 2010;330:612–616. PubMed PMC
Teixeira FK, Heredia F, Sarazin A, et al. A role for RNAi in the selective correction of DNA methylation defects. Science. 2009;323:1600–1604. PubMed
Li J, Yang D-L, Huang H, et al. Epigenetic memory marks determine epiallele stability at loci targeted by de novo DNA methylation. Nat Plants. 2020;6:661–674. PubMed
Molinier J. To be, or not to be, remethylated. Nat Plants. 2020;6:606–607. PubMed
Lynch M. The frailty of adaptive hypotheses for the origins of organismal complexity. PNAS. 2007;104:8597–8604. PubMed PMC
Bird A. The selfishness of law-abiding genes. Trends Genet. 2020;36:8–13. PubMed
Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 2009;19:1419–1428. PubMed PMC
Gray YH. It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet. 2000;16:461–468. PubMed
Morgan HD, Sutherland HGE, Martin DIK, et al. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23:314–318. PubMed
Martin A, Troadec C, Boualem A, et al. A transposon-induced epigenetic change leads to sex determination in melon. Nature. 2009;461:1135–1138. PubMed
Saito K, Nishida KM, Mori T, et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 2006;20:2214–2222. PubMed PMC
Hsieh T-F, Ibarra CA, Silva P, et al. Genome-wide demethylation of arabidopsis endosperm. Science. 2009;324:1451–1454. PubMed PMC
Ahmed I, Sarazin A, Bowler C, et al. Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis. Nucleic Acids Res. 2011;39:6919–6931. PubMed PMC
Bourque G, Burns KH, Gehring M, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. PubMed PMC
Maumus F, Quesneville H. Ancestral repeats have shaped epigenome and genome composition for millions of years in Arabidopsis thaliana. Nat Commun. 2014;5:4104. PubMed PMC
Batista RA, Moreno-Romero J, Qiu Y, et al. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons. eLife. 2019;8:e50541. PubMed PMC
Lee YCG, Karpen GH. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife. 2017;6:e25762. PubMed PMC
Stritt C, Gordon SP, Wicker T, et al. Recent activity in expanding populations and purifying selection have shaped transposable element landscapes across natural accessions of the Mediterranean grass brachypodium distachyon. Genome Biol Evol. 2018;10:304–318. PubMed PMC
Maumus F, Quesneville H. Impact and insights from ancient repetitive elements in plant genomes. Curr Opin Plant Biol. 2016;30:41–46. PubMed
Ibarra CA, Feng X, Schoft VK, et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science. 2012;337:1360–1364. PubMed PMC
Zhao D, Ferguson AA, Jiang N. What makes up plant genomes: the vanishing line between transposable elements and genes. Biochim Biophys Acta Gene Regul Mech. 2016;1859:366–380. PubMed
Osakabe A, Jamge B, Axelsson E, et al. The chromatin remodeler DDM1 prevents transposon mobility through deposition of histone variant H2A.W. Nat Cell Biol. 2021;23:391–400. PubMed
Lonnig W-E, Saedler H. Chromosome rearrangements and transposable elements. Annu Rev Genet. 2002;36:389–410. PubMed
Lim JK, Simmons MJ. Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays. 1994;16:269–275. PubMed
Mérel V, Boulesteix M, Fablet M, et al. Transposable elements in Drosophila. Mob DNA. 2020;11:23. PubMed PMC
Petrov DA, Aminetzach YT, Davis JC, et al. Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol. 2003;20:880–892. PubMed
Evgen’ev M, Zelentsova H, Mnjoian L, et al. Invasion of Drosophila virilis by the Penelope transposable element. Chromosoma. 2000;109:350–357. PubMed
Delprat A, Negre B, Puig M, et al. The Transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLOS ONE. 2009;4:e7883. PubMed PMC
Yu C, Han F, Zhang J, et al. A transgenic system for generation of transposon Ac/Ds-induced chromosome rearrangements in rice. Theor Appl Genet. 2012;125:1449–1462. PubMed PMC
Pascarella G, Hashimoto K, Busch A, et al. Recombination of repeat elements generates somatic complexity in human genomes . bioRxiv 2021. DOI:10.1101/2020.07.02.163816. PubMed DOI
Kent TV, Uzunović J, Wright SI. Coevolution between transposable elements and recombination. Philos Trans R Soc B. 2017;372:20160458. PubMed PMC
Termolino P, Cremona G, Consiglio MF, et al. Insights into epigenetic landscape of recombination-free regions. Chromosoma. 2016;125:301–308. PubMed PMC
Myers S, Freeman C, Auton A, et al. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet. 2008;40:1124–1129. PubMed
Mirouze M, Lieberman-Lazarovich M, Aversano R, et al. Loss of DNA methylation affects the recombination landscape in Arabidopsis. PNAS. 2012;109:5880–5885. PubMed PMC
Zamudio N, Barau J, Teissandier A, et al. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev. 2015;29:1256–1270. PubMed PMC
Okita AK, Zafar F, Su J, et al. Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription. Commun Biol. 2019;2:1–13. PubMed PMC
Marand AP, Jansky SH, Zhao H, et al. Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato. Genome Biol. 2017;18:203. PubMed PMC
Guo C, Spinelli M, Ye C, et al. Genome-wide comparative analysis of miniature inverted repeat transposable elements in 19 arabidopsis thaliana ecotype accessions. Sci Rep. 2017;7:2634. PubMed PMC
Hermant C, Torres-Padilla M-E. TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Genes Dev. 2021;35:22–39. PubMed PMC
Jordan IK, Rogozin IB, Glazko GV, et al. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003;19:68–72. PubMed
Miao B, Fu S, Lyu C, et al. Tissue-specific usage of transposable element-derived promoters in mouse development. Genome Biol. 2020;21:255. PubMed PMC
Sundaram V, Cheng Y, Ma Z, et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 2014;24:1963–1976. PubMed PMC
Jönsson ME, Ludvik Brattås P, Gustafsson C, et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat Commun. 2019;10:3182. PubMed PMC
Denli AM, Narvaiza I, Kerman BE, et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell. 2015;163:583–593. PubMed
Clayton EA, Rishishwar L, Huang T-C, et al. An atlas of transposable element-derived alternative splicing in cancer. Philos Trans R Soc B. 2020;375:20190342. PubMed PMC
Le TN, Miyazaki Y, Takuno S, et al. Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucleic Acids Res. 2015;43:3911–3921. PubMed PMC
Dolinoy DC. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev. 2008;66:S7–S11. PubMed PMC
Williams BP, Pignatta D, Henikoff S, et al. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet. 2015;11:e1005142. PubMed PMC
Lee YCG. The role of piRNA-mediated epigenetic silencing in the population dynamics of transposable elements in Drosophila melanogaster. PLoS Genet. 2015;11:e1005269. PubMed PMC
Horvath R, Slotte T. The Role of Small RNA-Based Epigenetic Silencing for Purifying Selection on Transposable Elements in Capsella grandiflora. Genome Biol Evol. 2017;9:2911–2920. PubMed PMC
Penterman J, Zilberman D, Huh JH, et al. DNA demethylation in the Arabidopsis genome. PNAS. 2007;104:6752–6757. PubMed PMC
Saze H, Shiraishi A, Miura A, et al. Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science. 2008;319:462–465. PubMed
Espinas NA, Tu LN, Furci L, et al. Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genet. 2020;16:e1008637. PubMed PMC
Saze H, Kitayama J, Takashima K, et al. Mechanism for full-length RNA processing of Arabidopsis genes containing intragenic heterochromatin. Nat Commun. 2013;4:2301. PubMed
Walter M, Teissandier A, Pérez-Palacios R, et al. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife. 2016;5:e11418. PubMed PMC
Maupetit-Mehouas S, Vaury C. Transposon reactivation in the germline may Be useful for both transposons and their host genomes. Cells. 2020;9:1172. PubMed PMC
Olovnikov I, Chan K, Sachidanandam R, et al. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell. 2013;51:594–605. PubMed PMC
Shpiz S, Ryazansky S, Olovnikov I, et al. Euchromatic transposon insertions trigger production of novel Pi- and Endo-siRNAs at the target sites in the Drosophila germline. PLoS Genet. 2014;10:e1004138. PubMed PMC
Song J, Liu J, Schnakenberg SL, et al. Variation in piRNA and transposable element content in strains of Drosophila melanogaster. Genome Biol Evol. 2014;6:2786–2798. PubMed PMC
Ronsseray S, Lehmann M, Anxolabehere D. The maternally inherited regulation of P elements in Drosophila melanogaster can be elicited by two P copies at cytological site 1a on the X chromosome. Genetics. 1991;129:501–512. PubMed PMC
Rozhkov NV, Hammell M, Hannon GJ. Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev. 2013;27:400–412. PubMed PMC
Zanni V, Eymery A, Coiffet M, et al. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters. Proc Natl Acad Sci USA. 2013;110:19842–19847. PubMed PMC
Ellison CE, Kagda MS, Cao W. Telomeric TART elements target the piRNA machinery in Drosophila. PLoS Biol. 2020;18:e3000689. PubMed PMC
Luo S, Lu J. Silencing of transposable elements by piRNAs in Drosophila: an evolutionary perspective. Genomics Proteomics Bioinformatics. 2017;15:164–176. PubMed PMC
Zemach A, Kim MY, Silva P, et al. Local DNA hypomethylation activates genes in rice endosperm. PNAS. 2010;107:18729–18734. PubMed PMC
Calarco JP, Borges F, Donoghue MTA, et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012;151:194–205. PubMed PMC
Martínez G, Panda K, Köhler C, et al. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants. 2016;2:16030. PubMed
Anzelon TA, Chowdhury S, Hughes SM, et al. Structural basis for piRNA-targeting . bioRxiv. 2020. DOI:10.1101/2020.12.07.413112. PubMed DOI PMC
Fei Y, Nyikó T, Molnar A. Non-perfectly matching small RNAs can induce stable and heritable epigenetic modifications and can be used as molecular markers to trace the origin and fate of silencing RNAs. Nucleic Acids Res. 2021;49:1900–1913. PubMed PMC
Gilbert C, Feschotte C. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr Opin Genet Dev. 2018;49:15–24. PubMed PMC
Gilbert C, Schaack S, Pace JK, et al. A role for host-parasite interactions in the horizontal transfer of DNA transposons across animal phyla. Nature. 2010;464:1347–1350. PubMed PMC
Obbard DJ, Gordon KHJ, Buck AH, et al. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci. 2009;364:99–115. PubMed PMC
Wang Y, Liang W, Tang T. Constant conflict between Gypsy LTR retrotransposons and CHH methylation within a stress-adapted mangrove genome. New Phytol. 2018;220:922–935. PubMed
Lisch D. Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol. 2009;60:43–66. PubMed
Lisch D, Slotkin RK. Strategies for silencing and escape: the ancient struggle between transposable elements and their hosts. Int Rev Cell Mol Biol. 2011;292:119–152. PubMed
Lisch D, Bennetzen JL. Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol. 2011;14:156–161. PubMed
Moelling K, Broecker F. Viruses and evolution – viruses first? A personal perspective. Front Microbiol. 2019;10. DOI:10.3389/fmicb.2019.00523. PubMed DOI PMC
Chiba S, Kondo H, Tani A, et al. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog. 2011;7(7):e1002146. PubMed PMC
Horie M, Honda T, Suzuki Y, et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature. 2010;463:84–87. PubMed PMC
Chu H, Jo Y, Cho WK. Evolution of endogenous non-retroviral genes integrated into plant genomes. Curr Plant Biol. 2014;1:55–59.
Palatini U, Miesen P, Carballar-Lejarazu R, et al. Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics. 2017;18:512. PubMed PMC
Sun YH, Xie LH, Zhuo X, et al. Domestic chickens activate a piRNA defense against avian leukosis virus. eLife. 2017;6. DOI:10.7554/eLife.24695. PubMed DOI PMC
Petit M, Mongelli V, Frangeul L, et al. piRNA pathway is not required for antiviral defense in Drosophila melanogaster. PNAS. 2016;113:E4218–E4227. PubMed PMC
Denkena J, Johannes F, Colomé-Tatché M. Region-level epimutation rates in Arabidopsis thaliana. Heredity. 2021. 127: 190–202. DOI:10.1101/2020.08.18.255919. PubMed DOI PMC
Jeggo PA, Holliday R. Azacytidine-induced reactivation of a DNA repair gene in Chinese hamster ovary cells. Mol Cell Biol. 1986;6:2944–2949. PubMed PMC
Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic variability in plants: heritability, adaptability, evolutionary significance. Russ J Plant Physiol. 2016;63:181–192.
Pignatta D, Novitzky K, Satyaki PRV, et al. A variably imprinted epiallele impacts seed development. PLoS Genet. 2018;14:e1007469. PubMed PMC
Kapitonov VV, Jurka J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica. 1999;107:27–37. PubMed
McCue AD, Nuthikattu S, Slotkin RK. Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biol. 2013;10:1379–1395. PubMed PMC
Manning K, Tör M, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet. 2006;38:948–952. PubMed
Chen W, Kong J, Qin C, et al. Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation Colourless non-ripening. Sci Rep. 2015;5:9192. PubMed PMC
Maumus F, Quesneville H. Deep investigation of arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLOS ONE. 2014;9:e94101. PubMed PMC
Baduel P, Colot V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Philos Trans R Soc B. 2021;376:20200123. PubMed PMC