The Demographic History of Populations and Genomic Imprinting have Shaped the Transposon Patterns in Arabidopsis lyrata
Language English Country United States Media print
Document type Journal Article
Grant support
GACR 22-20240S
Czech Science Foundation
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
40271996
PubMed Central
PMC12159739
DOI
10.1093/molbev/msaf093
PII: 8119009
Knihovny.cz E-resources
- Keywords
- Arabidopsis lyrata, demographic history, genomic imprinting, positive selection, transposable elements, transposon load,
- MeSH
- Arabidopsis * genetics MeSH
- Epigenesis, Genetic MeSH
- Genomic Imprinting * genetics MeSH
- Evolution, Molecular MeSH
- Genetics, Population MeSH
- Selection, Genetic MeSH
- DNA Transposable Elements * genetics MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- North America MeSH
- Names of Substances
- DNA Transposable Elements * MeSH
Purifying selection is expected to prevent the accumulation of transposable elements (TEs) within their host, especially when located in and around genes and if affected by epigenetic silencing. However, positive selection may favor the spread of TEs, causing genomic imprinting under parental conflict, as genomic imprinting allows parent-specific influence over resource accumulation to the progeny. Concomitantly, the number and frequency of TE insertions in natural populations are conditioned by demographic events. In this study, we aimed to test how demography and selective forces interact to affect the accumulation of TEs around genes, depending on their epigenetic silencing, with a particular focus on imprinted genes. To this aim, we compared the frequency and distribution of TEs in Arabidopsis lyrata from Europe and North America. Generally, we found that TE insertions showed a lower frequency when they were inserted in or near genes, especially TEs targeted by epigenetic silencing, suggesting purifying selection at work. We also found that many TEs were lost or got fixed in North American populations during the colonization and the postglacial range expansion from refugia of the species in North America, as well as during the transition to selfing, suggesting a potential "TE load." Finally, we found that silenced TEs increased in frequency and even tended to reach fixation when they were linked to imprinted genes. We conclude that in A. lyrata, genomic imprinting has spread in natural populations through demographic events and positive selection acting on silenced TEs, potentially under a parental conflict scenario.
Departamento de Botánica y Fisiología Vegetal Universidad de Salamanca 37007 Salamanca Spain
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
Forest Genetics Albert Ludwigs Universität Freiburg Bertoldstr 17 Freiburg Germany
See more in PubMed
Abascal F, Corvelo A, Cruz F, Villanueva-Cañas JL, Vlasova A, Marcet-Houben M, Martínez-Cruz B, Cheng JY, Prieto P, Quesada V, et al. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered PubMed DOI PMC
Batista RA, Köhler C. Genomic imprinting in plants-revisiting existing models. Genes Dev. 2020:34(1-2):24–36. 10.1101/gad.332924.119. PubMed DOI PMC
Belser C, Istace B, Denis E, Dubarry M, Baurens FC, Falentin C, Genete M, Berrabah W, Chèvre AM, Delourme R, et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat Plants. 2018:4(11):879–887. 10.1038/s41477-018-0289-4. PubMed DOI
Bonchev G, Willi Y. Accumulation of transposable elements in selfing populations of PubMed DOI
Bourgeois Y, Boissinot S. On the population dynamics of junk: a review on the population genomics of transposable elements. Genes (Basel). 2019:10(6):419. 10.3390/genes10060419. PubMed DOI PMC
Bourgeois Y, Ruggiero RP, Hariyani I, Boissinot S. Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations. PLoS Genet. 2020:16(10):e1009082. 10.1371/journal.pgen.1009082. PubMed DOI PMC
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, et al. Ten things you should know about transposable elements. Genome Biol. 2018:19(1):199. 10.1186/s13059-018-1577-z. PubMed DOI PMC
Boutin TS, Le Rouzic A, Capy P. How does selfing affect the dynamics of selfish transposable elements? Mob DNA. 2012:3:5. 10.1186/1759-8753-3-5. PubMed DOI PMC
Bramsiepe J, Krabberød AK, Bjerkan KN, Alling RM, Johannessen IM, Hornslien KS, Miller JR, Brysting AK, Grini PE. Structural evidence for MADS-box type I family expansion seen in new assemblies of PubMed DOI
Brandvain Y, Haig D. Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. Am Nat. 2005:166(3):330–338. 10.1086/432036. PubMed DOI
Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012:151(1):194–205. 10.1016/j.cell.2012.09.001. PubMed DOI PMC
Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Mol Ecol. 2013:22(6):1503–1517. 10.1111/mec.12170. PubMed DOI
Cuenca-Guardiola J, Morena-Barrio B, Navarro-Manzano E, Stevens J, Ouwehand WH, Gleadall NS, Corral J, Fernández-Breis JT. Detection and annotation of transposable element insertions and deletions on the human genome using nanopore sequencing. iScience. 2023:26(11):108214. 10.1016/j.isci.2023.108214. PubMed DOI PMC
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011:43(5):491–498. 10.1038/ng.806. PubMed DOI PMC
Foxe JP, Stift M, Tedder A, Haudry A, Wright SI, Mable BK. Reconstructing origins of loss of self-incompatibility and selfing in North American PubMed DOI
Geist KS, Strassmann JE, Queller DC. Family quarrels in seeds and rapid adaptive evolution in PubMed DOI PMC
Griffin PC, Willi Y. Evolutionary shifts to self-fertilisation restricted to geographic range margins in North American PubMed DOI
Guggisberg A, Liu X, Suter L, Mansion G, Fischer MC, Fior S, Roumet M, Kretzschmar R, Koch MA, Widmer A. The genomic basis of adaptation to calcareous and siliceous soils in PubMed DOI
Hazzouri KM, Mohajer A, Dejak SI, Otto SP, Wright SI. Contrasting patterns of transposable-element insertion polymorphism and nucleotide diversity in autotetraploid and allotetraploid PubMed DOI PMC
Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 2009:19(8):1419–1428. 10.1101/gr.091678.109. PubMed DOI PMC
Horvath R, Minadakis N, Bourgeois Y, Roulin AC. The evolution of transposable elements in PubMed DOI PMC
Horvath R, Slotte T. The role of small RNA-based epigenetic silencing for purifying selection on transposable elements in PubMed DOI PMC
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, et al. The PubMed DOI PMC
Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science. 2012:337(6100):1360–1364. 10.1126/science.1224839. PubMed DOI PMC
İltaş O, Čertner M, Lafon Placette C. Natural variation in sexual traits and gene expression between selfing and outcrossing PubMed DOI PMC
Johnson NR, Yeoh JM, Coruh C, Axtell MJ. Improved placement of multi-mapping small RNAs. G3 (Bethesda). 2016:6(7):2103–2111. 10.1534/g3.116.030452. PubMed DOI PMC
Kofler R, Gómez-Sánchez D, Schlötterer C. PoPoolationTE2: comparative population genomics of transposable elements using Pool-Seq. Mol Biol Evol. 2016:33(10):2759–2764. 10.1093/molbev/msw137. PubMed DOI PMC
Kirkpatrick M, Jarne P. The effects of a bottleneck on inbreeding depression and the genetic load. Am Nat. 2000:155(2):154–167. 10.1086/303312. PubMed DOI
Klosinska M, Picard CL, Gehring M. Conserved imprinting associated with unique epigenetic signatures in the PubMed DOI PMC
Kondili M, Fust A, Preussner J, Kuenne C, Braun T, Looso M. UROPA: a tool for universal RObust peak annotation. Sci Rep. 2017:7(1):2593. 10.1038/s41598-017-02464-y. PubMed DOI PMC
Lafon-Placette C, Köhler C. Endosperm-based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers. Mol Ecol. 2016:25(11):2620–2629. 10.1111/mec.13552. PubMed DOI
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012:9(4):357–359. 10.1038/nmeth.1923. PubMed DOI PMC
Legrand S, Caron T, Maumus F, Schvartzman S, Quadrana L, Durand E, Gallina S, Pauwels M, Mazoyer C, Huyghe L, et al. Differential retention of transposable element-derived sequences in outcrossing PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018:34(18):3094–3100. 10.1093/bioinformatics/bty191. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009:25(14):1754–1760. 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 genome project data processing subgroup . The sequence alignment/map format and SAMtools. Bioinformatics. 2009:25(16):2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC
Li T, Yin L, Stoll CE, Lisch D, Zhao M. Conserved noncoding sequences and de novo mutator insertion alleles are imprinted in maize. Plant Physiol. 2023:191(1):299–316. 10.1093/plphys/kiac459. PubMed DOI PMC
Lockton S, Ross-Ibarra J, Gaut BS. Demography and weak selection drive patterns of transposable element diversity in natural populations of PubMed DOI PMC
Lohmueller KE, Indap AR, Schmidt S, Boyko AR, Hernandez RD, Hubisz MJ, Sninsky JJ, White TJ, Sunyaev SR, Nielsen R, et al. Proportionally more deleterious genetic variation in European than in African populations. Nature. 2008:451(7181):994–997. 10.1038/nature06611. PubMed DOI PMC
Lynch M, Conery JS. The origins of genome complexity. Science. 2003:302(5649):1401–1404. 10.1126/science.1089370. PubMed DOI
Lynch M, Walsh B. The origins of genome architecture. Vol. 98. Sunderland (MA): Sinauer Associates; 2007.
Ma Z, Coruh C, Axtell MJ. PubMed DOI PMC
Montgomery EA, Huang SM, Langley CH, Judd BH. Chromosome rearrangement by ectopic recombination in PubMed DOI PMC
Morgan MT. Transposable element number in mixed mating populations. Genetics Res. 2001:77(3)):261–275. 10.1017/S0016672301005067. PubMed DOI
Nielsen R, Slatkin M. An introduction to population genetics: theory and applications. Sunderland (MA): Sinauer Associates, Inc. Publishers; 2014.
Petrén H, Thosteman H, Stift M, Toräng P, Ågren J, Friberg M. Differences in mating system and predicted parental conflict affect post-pollination reproductive isolation in a flowering plant. Evolution. 2023:77(4):1019–1030. 10.1093/evolut/qpad016. PubMed DOI
Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW, Gehring M. Natural epigenetic polymorphisms lead to intraspecific variation in PubMed DOI PMC
Pires ND, Grossniklaus U. Different yet similar: evolution of imprinting in flowering plants and mammals. F1000Prime Rep. 2014:6:63. 10.12703/P6-63. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010:26(6):841–842. 10.1093/bioinformatics/btq033. PubMed DOI PMC
Ross-Ibarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L, Gos G, Charlesworth D, Gaut BS. Patterns of polymorphism and demographic history in natural populations of PubMed DOI PMC
Ruggiero RP, Bourgeois Y, Boissinot S. LINE insertion polymorphisms are abundant but at low frequencies across populations of PubMed DOI PMC
Sammarco I, Pieters J, Salony S, Toman I, Zolotarov G, Lafon Placette C. Epigenetic targeting of transposon relics: beating the dead horses of the genome? Epigenetics. 2022:17(11):1331–1344. 10.1080/15592294.2021.2022066. PubMed DOI PMC
Schmickl R, Jørgensen MH, Brysting AK, Koch MA. The evolutionary history of the PubMed DOI PMC
Smith NG, Hurst LD. Molecular evolution of an imprinted gene: repeatability of patterns of evolution within the mammalian insulin-like growth factor type II receptor. Genetics. 1998:150(2):823–833. 10.1093/genetics/150.2.823. PubMed DOI PMC
Smolka M, Paulin LF, Grochowski CM, Horner DW, Mahmoud M, Behera S, Kalef-Ezra E, Gandhi M, Hong K, Pehlivan D, et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat Biotechnol. 2024:42(10):1571–1580. 10.1038/s41587-023-02024-y. Erratum in: Nat Biotechnol. 2024:42(10):1616. doi: 10.1038/s41587-024-02141-2. PubMed DOI PMC
Spillane C, Schmid KJ, Laoueillé-Duprat S, Pien S, Escobar-Restrepo JM, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U. Positive Darwinian selection at the imprinted MEDEA locus in plants. Nature. 2007:448(7151):349–352. 10.1038/nature05984. PubMed DOI
Stritt C, Gordon SP, Wicker T, Vogel JP, Roulin AC. Recent activity in expanding populations and purifying selection have shaped transposable element landscapes across natural accessions of the Mediterranean grass PubMed DOI PMC
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989:123(3):585–595. 10.1093/genetics/123.3.585. PubMed DOI PMC
Tuteja R, McKeown PC, Ryan P, Morgan CC, Donoghue MTA, Downing T, O'Connell MJ, Spillane C. Paternally expressed imprinted genes under positive Darwinian selection in PubMed DOI PMC
Willi Y, Fracassetti M, Zoller S, Van Buskirk J. Accumulation of mutational load at the edges of a species range. Mol Biol Evol. 2018:35(4):781–791. 10.1093/molbev/msy003. PubMed DOI
Willi Y, Lucek K, Bachmann O, Walden N. Recent speciation associated with range expansion and a shift to self-fertilization in North American PubMed DOI PMC
Willi Y, Määttänen K. Evolutionary dynamics of mating system shifts in PubMed DOI
Williamson RJ, Josephs EB, Platts AE, Hazzouri KM, Haudry A, Blanchette M, Wright SI. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of PubMed DOI PMC
Wright SI, Schoen DJ. Transposon dynamics and the breeding system. Genetica. 1999:107(1/3):139–148. 10.1023/A:1003953126700. PubMed DOI
Xue AT, Ruggiero RP, Hickerson MJ, Boissinot S. Differential effect of selection against LINE retrotransposons among vertebrates inferred from whole-genome data and demographic modeling. Genome Biol Evol. 2018:10(5):1265–1281. 10.1093/gbe/evy083. PubMed DOI PMC
Zhao Y, Li X, Xie J, Xu W, Chen S, Zhang X, Liu S, Wu J, El-Kassaby YA, Zhang D. Transposable elements: distribution, polymorphism, and climate adaptation in PubMed DOI PMC