Electrochemical biosensors for analysis of DNA point mutations in cancer research
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MMCI
Ministerstvo Zdravotnictví Ceské Republiky
00209805
Ministerstvo Zdravotnictví Ceské Republiky
LM2018125
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
NU21-08-00078
Agentura Pro Zdravotnický Výzkum České Republiky
CZ.02.1.01/0.0/0.0/16_013/0001674
European Regional Development Fund
PubMed
36289102
DOI
10.1007/s00216-022-04388-7
PII: 10.1007/s00216-022-04388-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarker, Cancer diagnostics, DNA point mutation, Electrochemical biosensor, Isothermal amplification, Single nucleotide variation,
- MeSH
- biosenzitivní techniky * MeSH
- bodová mutace MeSH
- DNA genetika MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- mutace MeSH
- nádory * diagnóza genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
Cancer is a genetic disease induced by mutations in DNA, in particular point mutations in important driver genes that lead to protein malfunctioning and ultimately to tumorigenesis. Screening for the most common DNA point mutations, especially in such genes as TP53, BRCA1 and BRCA2, EGFR, KRAS, or BRAF, is crucial to determine predisposition risk for cancer or to predict response to therapy. In this review, we briefly depict how these genes are involved in cancer, followed by a description of the most common techniques routinely applied for their analysis, including high-throughput next-generation sequencing technology and less expensive low-throughput options, such as real-time PCR, restriction fragment length polymorphism, or high resolution melting analysis. We then introduce benefits of electrochemical biosensors as interesting alternatives to the standard methods in terms of cost, speed, and simplicity. We describe most common strategies involved in electrochemical biosensing of point mutations, relying mostly on PCR or isothermal amplification techniques, and critically discuss major challenges and obstacles that, until now, prevented their more widespread application in clinical settings.
Zobrazit více v PubMed
Harris TJR, McCormick F. The molecular pathology of cancer. Nat Rev Clin Oncol. 2010;7(5):251–65. https://doi.org/10.1038/nrclinonc.2010.41 . DOI
Gagan J, Van Allen EM. Next-generation sequencing to guide cancer therapy. Genome Med. 2015;7(1):80. https://doi.org/10.1186/s13073-015-0203-x . DOI
Campuzano S, Yanez-Sedeno P, Pingarron JM. Current trends and challenges in bioelectrochemistry for non-invasive and early diagnosis. Curr Opin Electrochem. 2018;12:81–91. https://doi.org/10.1016/j.coelec.2018.04.015 . DOI
Bartosik M, Jirakova L. Electrochemical analysis of nucleic acids as potential cancer biomarkers. Curr Opin Electrochem. 2019;14:96–103. https://doi.org/10.1016/j.coelec.2019.01.002 . DOI
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: analytical approach. Trends Analyt Chem. 2019;119: 115609. https://doi.org/10.1016/j.trac.2019.07.020 . DOI
Zhang W, Xiao G, Chen J, Wang L, Hu Q, Wu J, Zhang W, Song M, Qiao J, Xu C. Electrochemical biosensors for measurement of colorectal cancer biomarkers. Anal Bioanal Chem. 2021;413(9):2407–28. https://doi.org/10.1007/s00216-021-03197-8 . DOI
Rahner N, Steinke V. Hereditary cancer syndromes Dtsch Arztebl Int. 2008;105(41):706–14. https://doi.org/10.3238/arztebl.2008.0706 . DOI
Soukupova J, Zemankova P, Kleiblova P, Janatova M, Kleibl Z. CZECANCA: CZEch CAncer paNel for Clinical Application – návrh a příprava cíleného sekvenačního panelu pro identifi kaci nádorové predispozice u rizikových osob v České republice. Klin Onkol. 2015;29:S46–54. https://doi.org/10.14735/amko2016S46 . DOI
Lane DP. p53, guardian of the genome. Nature. 1992;358(6381):15–6. https://doi.org/10.1038/358015a0 . DOI
Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 2000;14(8):981–93. DOI
Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–70. https://doi.org/10.1038/nrc3711 . DOI
Malkin D. Li-fraumeni syndrome. Genes. Cancer. 2011;2(4):475–84. https://doi.org/10.1177/1947601911413466 . DOI
Li FP, Fraumeni JFJ. Soft-tissue sarcomas, breast cancer, and other neoplasms. Ann Intern Med. 1969;71(4):747–52. https://doi.org/10.7326/0003-4819-71-4-747 . DOI
Lynch HT, Mulcahy GM, Harris RE, Guirgis HA, Lynch JF. Genetic and pathologic findings in a kindred with hereditary sarcoma, breast cancer, brain tumors, leukemia, lung, laryngeal, and adrenal cortical carcinoma. Cancer. 1978;41(5):2055–64. https://doi.org/10.1002/1097-0142(197805)41:5%3c2055::aid-cncr2820410554%3e3.0.co;2-x . DOI
Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.
Guha T, Malkin D (2017) Inherited TP53 mutations and the Li-Fraumeni syndrome. Cold Spring Harb Perspect Med 7 (4). https://doi.org/10.1101/cshperspect.a026187
Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2018;47(D1):D941–7. https://doi.org/10.1093/nar/gky1015 . DOI
COSMIC: Catalogue of somatic mutations in cancer. https://cancer.sanger.ac.uk/cosmic . Accessed 11 Jul 2022.
Birch JM, Alston RD, McNally RJQ, Evans DGR, Kelsey AM, Harris M, Eden OB, Varley JM. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene. 2001;20(34):4621–8. https://doi.org/10.1038/sj.onc.1204621 . DOI
Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12(1):68–78. https://doi.org/10.1038/nrc3181 . DOI
Levy-Lahad E, Friedman E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2007;96(1):11–5. https://doi.org/10.1038/sj.bjc.6603535 . DOI
Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, Pasini B, Radice P, Manoukian S, Eccles DM, Tang N, Olah E, Anton-Culver H, Warner E, Lubinski J, Gronwald J, Gorski B, Tulinius H, Thorlacius S, Eerola H, Nevanlinna H, Syrjäkoski K, Kallioniemi OP, Thompson D, Evans C, Peto J, Lalloo F, Evans DG, Easton DF. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30. https://doi.org/10.1086/375033 . DOI
Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, Evans DG, Izatt L, Eeles RA, Adlard J, Davidson R, Eccles D, Cole T, Cook J, Brewer C, Tischkowitz M, Douglas F, Hodgson S, Walker L, Porteous ME, Morrison PJ, Side LE, Kennedy MJ, Houghton C, Donaldson A, Rogers MT, Dorkins H, Miedzybrodzka Z, Gregory H, Eason J, Barwell J, McCann E, Murray A, Antoniou AC, Easton DF. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105(11):812–22. https://doi.org/10.1093/jnci/djt095 . DOI
Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature. 1997;386(6627):761–3. https://doi.org/10.1038/386761a0 . DOI
Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67. https://doi.org/10.1016/0092-8674(90)90186-i . DOI
Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T, Traulsen A, Nowak MA, Siegel C, Velculescu VE, Kinzler KW, Vogelstein B, Willis J, Markowitz SD. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA. 2008;105(11):4283–8. https://doi.org/10.1073/pnas.0712345105 . DOI
Tomasetti C, Vogelstein B, Parmigiani G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA. 2013;110(6):1999–2004. https://doi.org/10.1073/pnas.1221068110 . DOI
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58. https://doi.org/10.1126/science.1235122 . DOI
Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272(5264):1023–6. https://doi.org/10.1126/science.272.5264.1023 . DOI
Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70. https://doi.org/10.1016/s0092-8674(00)81333-1 . DOI
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MDM, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9. https://doi.org/10.1038/nature12634 . DOI
Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S, Aoki T, Miki Y, Mori T, Nakamura Y. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1(4):229–33. https://doi.org/10.1093/hmg/1.4.229 . DOI
Mann KM, Ying H, Juan J, Jenkins NA, Copeland NG. KRAS-related proteins in pancreatic cancer. Pharmacol Ther. 2016;168:29–42. https://doi.org/10.1016/j.pharmthera.2016.09.003 . DOI
Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F, Wittinghofer A. The ras-rasGAP complex: Structural basis for GTPase activation and its loss in oncogenic ras mutants. Science. 1997;277(5324):333–9. https://doi.org/10.1126/science.277.5324.333 . DOI
Li Z-N, Zhao L, Yu L-F, Wei M-J. BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy. Gastroenterol Rep. 2020;8(3):192–205. https://doi.org/10.1093/gastro/goaa022 . DOI
Wang Z. ErbB receptors and cancer. In: Wang Z, editor. ErbB receptor signaling: methods and protocols. New York: Springer; 2017. p. 3–35. https://doi.org/10.1007/978-1-4939-7219-7_1 . DOI
Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282–303. https://doi.org/10.1016/j.ccr.2014.02.025 . DOI
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3–20. https://doi.org/10.1002/1878-0261.12155 . DOI
Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28(7):1254–61. https://doi.org/10.1200/jco.2009.24.6116 . DOI
Takahashi T, Sakai K, Kenmotsu H, Yoh K, Daga H, Ohira T, Ueno T, Aoki T, Hayashi H, Yamazaki K, Hosomi Y, Chen-Yoshikawa TF, Okumura N, Takiguchi Y, Sekine A, Haruki T, Yamamoto H, Sato Y, Akamatsu H, Seto T, Saeki S, Sugio K, Nishio M, Inokawa H, Yamamoto N, Nishio K, Tsuboi M. Predictive value of EGFR mutation in non-small-cell lung cancer patients treated with platinum doublet postoperative chemotherapy. Cancer Sci. 2022;113(1):287–96. https://doi.org/10.1111/cas.15171 . DOI
Richman SD, Seymour MT, Chambers P, Elliott F, Daly CL, Meade AM, Taylor G, Barrett JH, Quirke P. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J Clin Oncol. 2009;27(35):5931–7. https://doi.org/10.1200/jco.2009.22.4295 . DOI
Seligmann JF, Fisher D, Smith CG, Richman SD, Elliott F, Brown S, Adams R, Maughan T, Quirke P, Cheadle J, Seymour M, Middleton G. Investigating the poor outcomes ofBRAF-mutant advanced colorectal cancer: analysis from 2530 patients in randomised clinical trials. Ann Oncol. 2017;28(3):562–8. https://doi.org/10.1093/annonc/mdw645 . DOI
Edge P, Bansal V. Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing. Nat Commun. 2019;10(1):4660. https://doi.org/10.1038/s41467-019-12493-y . DOI
Mardis ER. DNA sequencing technologies: 2006–2016. Nat Protoc. 2017;12(2):213–8. https://doi.org/10.1038/nprot.2016.182 . DOI
Ravi RK, Walton K, Khosroheidari M. MiSeq: a next generation sequencing platform for genomic analysis. Methods Mol Biol. 2018;1706:223–32. https://doi.org/10.1007/978-1-4939-7471-9_12 . DOI
Davis AHT, Wang J, Tsang TC, Harris DT. Direct sequencing is more accurate and feasible in detecting single nucleotide polymorphisms than RFLP: using human vascular endothelial growth factor gene as a model. Biol Res Nurs. 2007;9(2):170–8. https://doi.org/10.1177/1099800407308083 . DOI
Hashim HO, Al-Shuhaib MBS. Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: a review J Appl Biotechnol Rep. 2019;6(4):137–44. https://doi.org/10.29252/jabr.06.04.02 . DOI
He H, Zhang HL, Li ZX, Liu Y, Liu XL. Expression, SNV identification, linkage disequilibrium, and combined genotype association analysis of the muscle-specific gene CSRP3 in Chinese cattle. Gene. 2014;535(1):17–23. https://doi.org/10.1016/j.gene.2013.11.014 . DOI
Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74(1):681–710. https://doi.org/10.1146/annurev.biochem.74.082803.133243 . DOI
Abi A, Safavi A. Targeted detection of single-nucleotide variations: progress and promise. ACS Sens. 2019;4(4):792–807. https://doi.org/10.1021/acssensors.8b01604 . DOI
Hestekin CN, Barron AE. The potential of electrophoretic mobility shift assays for clinical mutation detection. Electrophoresis. 2006;27(19):3805–15. https://doi.org/10.1002/elps.200600421 . DOI
Miller KM, Ming TJ, Schulze AD, Withler RE. Denaturing gradient gel electrophoresis (DGGE): a rapid and sensitive technique to screen nucleotide sequence variation in populations. Biotechniques. 1999;27(5):1016–30. https://doi.org/10.2144/99275rr02 . DOI
Farrar JS, Wittwer CT. Chapter 6 - High-resolution melting curve analysis for molecular diagnostics. In: Patrinos GP, editor. Molecular Diagnostics (3rd Edition). Academic Press; 2017. p. 79–102. https://doi.org/10.1016/B978-0-12-802971-8.00006-7 . DOI
Erali M, Voelkerding KV, Wittwer CT. High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol. 2008;85(1):50–8. https://doi.org/10.1016/j.yexmp.2008.03.012 . DOI
Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem. 2004;50(10):1748–54. https://doi.org/10.1373/clinchem.2003.029751 . DOI
Huang W-L, Wei F, Wong DT, Lin C-C, Su W-C. The emergent landscape of detecting EGFR mutations using circulating tumor DNA in lung cancer. Biomed Res Int. 2015;2015: 340732. https://doi.org/10.1155/2015/340732 . DOI
Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci (Lond). 2005;109(4):365–79. https://doi.org/10.1042/cs20050086 . DOI
Medrano RFV, de Oliveira CA. Guidelines for the tetra-primer ARMS–PCR technique development. Mol Biotechnol. 2014;56(7):599–608. https://doi.org/10.1007/s12033-014-9734-4 . DOI
Kofiadi IA, Rebrikov DV. Methods for detecting single nucleotide polymorphisms: allele-specific PCR and hybridization with oligonucleotide probe. Russ J Genet. 2006;42(1):16–26. https://doi.org/10.1134/S1022795406010029 . DOI
Miotke L, Lau BT, Rumma RT, Ji HP. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal Chem. 2014;86(5):2618–24. https://doi.org/10.1021/ac403843j . DOI
Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault S-F. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn. 2018;18(1):7–17. https://doi.org/10.1080/14737159.2018.1400384 . DOI
Gaylord BS, Massie MR, Feinstein SC, Bazan GC. SNP detection using peptide nucleic acid probes and conjugated polymers: applications in neurodegenerative disease identification. Proc Natl Acad Sci USA. 2005;102(1):34–9. https://doi.org/10.1073/pnas.0407578101 . DOI
Sun Y, Tian H, Liu C, Yang D, Li Z. A clamp-based one-step droplet digital reverse transcription PCR (ddRT-PCR) for precise quantitation of messenger RNA mutation in single cells. ACS Sens. 2018;3(9):1795–801. https://doi.org/10.1021/acssensors.8b00524 . DOI
Yu TM, Morrison C, Gold EJ, Tradonsky A, Layton AJ. Multiple biomarker testing tissue consumption and completion rates with single-gene tests and investigational use of Oncomine Dx Target Test for advanced non-small-cell lung cancer: a single-center analysis. Clin Lung Cancer. 2019;20(1):20-29.e28. https://doi.org/10.1016/j.cllc.2018.08.010 . DOI
Zhao J, Liu P, Yu Y, Zhi J, Zheng X, Yu J, Gao M. Comparison of diagnostic methods for the detection of a BRAF mutation in papillary thyroid cancer. Oncol Lett. 2019;17(5):4661–6. https://doi.org/10.3892/ol.2019.10131 . DOI
Situ B, Cao N, Li B, Liu Q, Lin L, Dai Z, Zou X, Cai Z, Wang Q, Yan X, Zheng L. Sensitive electrochemical analysis of BRAF V600E mutation based on an amplification-refractory mutation system coupled with multienzyme functionalized Fe3O4/Au nanoparticles. Biosens Bioelectron. 2013;43:257–63. https://doi.org/10.1016/j.bios.2012.12.021 . DOI
Wei J, Wang Y, Gao J, Li Z, Pang R, Zhai T, Ma Y, Wang Z, Meng X. Detection of BRAFV600E mutation of thyroid cancer in circulating tumor DNA by an electrochemical-enrichment assisted ARMS-qPCR assay. Microchem J. 2022;179: 107452. https://doi.org/10.1016/j.microc.2022.107452 . DOI
Won BY, Shin SC, Chung W-y, Shin S, Cho D-Y, Park HG. Mismatch DNA-specific enzymatic cleavage employed in a new method for the electrochemical detection of genetic mutations. ChemComm. 2009;28:4230–2. https://doi.org/10.1039/B907268C . DOI
Xu X-W, Weng X-H, Wang C-L, Lin W-W, Liu A-L, Chen W, Lin X-H. Detection EGFR exon 19 status of lung cancer patients by DNA electrochemical biosensor. Biosens Bioelectron. 2016;80:411–7. https://doi.org/10.1016/j.bios.2016.02.009 . DOI
Wang X, Wu J, Mao W, He X, Ruan L, Zhu J, Shu P, Zhang Z, Jiang B, Zhang X. A tetrahedral DNA nanostructure-decorated electrochemical platform for simple and ultrasensitive EGFR genotyping of plasma ctDNA. Analyst. 2020;145(13):4671–9. https://doi.org/10.1039/D0AN00591F . DOI
Wu L, Zhou T, Huang R. A universal CRISPR/Cas9-based electrochemiluminescence probe for sensitive and single-base-specific DNA detection. Sens Actuators B Chem. 2022;357: 131411. https://doi.org/10.1016/j.snb.2022.131411 . DOI
Lee YuH, Cao Y, Lu X, Hsing IM. Detection of rare variant alleles using the AsCas12a double-stranded DNA trans-cleavage activity. Biosens Bioelectron. 2021;189: 113382. https://doi.org/10.1016/j.bios.2021.113382 . DOI
Zhu D, Xing D, Shen X, Liu J, Chen Q. High sensitive approach for point mutation detection based on electrochemiluminescence. Biosens Bioelectron. 2004;20(3):448–53. https://doi.org/10.1016/j.bios.2004.02.029 . DOI
Attoye B, Baker MJ, Thomson F, Pou C, Corrigan DK. Optimisation of an electrochemical DNA sensor for measuring KRAS G12D and G13D point mutations in different tumour types. Biosensors. 2021;11(2):42. https://doi.org/10.3390/bios11020042 . DOI
Miyahara H, Yamashita K, Kanai M, Uchida K, Takagi M, Kondo H, Takenaka S. Electrochemical analysis of single nucleotide polymorphisms of p53 gene. Talanta. 2002;56(5):829–35. https://doi.org/10.1016/S0039-9140(01)00652-X . DOI
Horakova P, Simkova E, Vychodilova Z, Brazdova M, Fojta M. Detection of single nucleotide polymorphisms in p53 mutation hotspots and expression of mutant p53 in human cell lines using an enzyme-linked electrochemical assay. Electroanalysis. 2009;21(15):1723–9. https://doi.org/10.1002/elan.200904656 . DOI
Bi Q, Gan XY, Yuan R, Xiang Y. Copper-free click chemistry-mediated cyclic ligation amplification for highly sensitive and non-label electrochemical detection of gene mutation. J Electrochem Soc. 2020;167(2):027535. https://doi.org/10.1149/1945-7111/ab6a81 . DOI
Hamidi-Asl E, Raoof JB, Hejazi MS, Sharifi S, Golabi SM, Palchetti I, Mascini M. A genosensor for point mutation detection of P53 Gene PCR product using magnetic particles. Electroanalysis. 2015;27(6):1378–86. https://doi.org/10.1002/elan.201400660 . DOI
Esteban-Fernandez de Avila B, Araque E, Campuzano S, Pedrero M, Dalkiran B, Barderas R, Villalonga R, Kilic E, Pingarron JM. Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. Anal Chem. 2015;87(4):2290–8. https://doi.org/10.1021/ac504032d . DOI
Wang C, Yu J, Qi L, Yu J, Yang M, Du Y. Glucometer-based ultra-sensitive BRAF V600E mutation detection facilitated by magnetic nanochains and a self-made point-of-care (POC) device. Electroanalysis. 2022;34(2):294–301. https://doi.org/10.1002/elan.202100286 . DOI
Chen M, Wu D, Tu S, Yang C, Chen D, Xu Y. CRISPR/Cas9 cleavage triggered ESDR for circulating tumor DNA detection based on a 3D graphene/AuPtPd nanoflower biosensor. Biosens Bioelectron. 2021;173: 112821. https://doi.org/10.1016/j.bios.2020.112821 . DOI
Liu F, Peng J, Lei Y-M, Liu R-S, Jin L, Liang H, Liu H-F, Ma S-Y, Zhang X-H, Zhang Y-P, Li C-P, Zhao H. Electrochemical detection of ctDNA mutation in non-small cell lung cancer based on CRISPR/Cas12a system. Sens Actuators B Chem. 2022;362: 131807. https://doi.org/10.1016/j.snb.2022.131807 . DOI
Xiao Q, Feng J, Li J, Liu Y, Wang D, Huang S. A ratiometric electrochemical biosensor for ultrasensitive and highly selective detection of the K-ras gene via exonuclease III-assisted target recycling and rolling circle amplification strategies. Anal Methods. 2019;11(32):4146–56. https://doi.org/10.1039/C9AY01007F . DOI
Lee S, You J, Baek I, Park H, Jang K, Park C, Na S. Synergistic enhanced rolling circle amplification based on mutS and radical polymerization for single-point mutation DNA detection. Biosens Bioelectron. 2022;210: 114295. https://doi.org/10.1016/j.bios.2022.114295 . DOI
Wang T, Peng Q, Guo B, Zhang D, Zhao M, Que H, Wu H, Yan Y. An integrated electrochemical biosensor based on target-triggered strand displacement amplification and “four-way” DNA junction towards ultrasensitive detection of PIK3CA gene mutation. Biosens Bioelectron. 2020;150: 111954. https://doi.org/10.1016/j.bios.2019.111954 . DOI
Su Q, Xing D, Zhou X. Magnetic beads based rolling circle amplification–electrochemiluminescence assay for highly sensitive detection of point mutation. Biosens Bioelectron. 2010;25(7):1615–21. https://doi.org/10.1016/j.bios.2009.11.025 . DOI
Yang L, Tao Y, Yue G, Li R, Qiu B, Guo L, Lin Z, Yang H-H. Highly selective and sensitive electrochemiluminescence biosensor for p53 DNA sequence based on nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification. Anal Chem. 2016;88(10):5097–103. https://doi.org/10.1021/acs.analchem.5b04521 . DOI
Jin X, Zhang D, Zhang W, Wang Y, Xiao Q, Huang S. Ratiometric electrochemical biosensor for ultrasensitive and highly selective detection of p53 gene based on nicking endonuclease-assisted target recycling and rolling circle amplification. Microchem J. 2021;168: 106461. https://doi.org/10.1016/j.microc.2021.106461 . DOI
Wang Q, Yang C, Xiang Y, Yuan R, Chai Y. Dual amplified and ultrasensitive electrochemical detection of mutant DNA Biomarkers based on nuclease-assisted target recycling and rolling circle amplifications. Biosens Bioelectron. 2014;55:266–71. https://doi.org/10.1016/j.bios.2013.12.034 . DOI
Dou B, Li J, Jiang B, Yuan R, Xiang Y. Electrochemical screening of single nucleotide polymorphisms with significantly enhanced discrimination factor by an amplified ratiometric sensor. Anal Chim Acta. 2018;1038:166–72. https://doi.org/10.1016/j.aca.2018.07.027 . DOI
Benvidi A, Dehghani Firouzabadi A, Dehghan Tezerjani M, Moshtaghiun SM, Mazloum-Ardakani M, Ansarin A. A highly sensitive and selective electrochemical DNA biosensor to diagnose breast cancer. J Electroanal Chem. 2015;750:57–64. https://doi.org/10.1016/j.jelechem.2015.05.002 . DOI
Tripathy S, Gangwar R, Supraja P, Rao AN, Vanjari SRK, Singh SG. Graphene doped Mn2O3 nanofibers as a facile electroanalytical DNA point mutation detection platform for early diagnosis of breast/ovarian cancer. Electroanalysis. 2018;30(9):2110–20. https://doi.org/10.1002/elan.201800220 . DOI
Senel M, Dervisevic M, Kokkokoğlu F. Electrochemical DNA biosensors for label-free breast cancer gene marker detection. Anal Bioanal Chem. 2019;411(13):2925–35. https://doi.org/10.1007/s00216-019-01739-9 . DOI
Das J, Ivanov I, Safaei TS, Sargent EH, Kelley SO. Combinatorial probes for high-throughput electrochemical analysis of circulating nucleic acids in clinical samples. Angew Chem Int Ed. 2018;57(14):3711–6. https://doi.org/10.1002/anie.201800455 . DOI
Hu F, Zhang W, Meng W, Ma Y, Zhang X, Xu Y, Wang P, Gu Y. Ferrocene-labeled and purification-free electrochemical biosensor based on ligase chain reaction for ultrasensitive single nucleotide polymorphism detection. Anal Chim Acta. 2020;1109:9–18. https://doi.org/10.1016/j.aca.2020.02.062 . DOI
Das J, Ivanov I, Montermini L, Rak J, Sargent EH, Kelley SO. An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem. 2015;7(7):569–75. https://doi.org/10.1038/nchem.2270 . DOI
Zeng N, Xiang J. Detection of KRAS G12D point mutation level by anchor-like DNA electrochemical biosensor. Talanta. 2019;198:111–7. https://doi.org/10.1016/j.talanta.2019.01.105 . DOI
Zhou X, Liu X, Xia X, Yang X, Xiang H. Sensitive, enzyme-free and label-free electrochemical sensor for K-ras G12D point mutation detection based on double cascade amplification reaction. J Electroanal Chem. 2020;870: 114270. https://doi.org/10.1016/j.jelechem.2020.114270 . DOI
Huang Y, Tao M, Luo S, Zhang Y, Situ B, Ye X, Chen P, Jiang X, Wang Q, Zheng L. A novel nest hybridization chain reaction based electrochemical assay for sensitive detection of circulating tumor DNA. Anal Chim Acta. 2020;1107:40–7. https://doi.org/10.1016/j.aca.2020.02.006 . DOI
Wang W, Gao Y, Wang W, Zhang J, Li Q, Wu Z-S. Ultrasensitive electrochemical detection of cancer-related point mutations based on surface-initiated three-dimensionally self-assembled DNA nanostructures from only two palindromic probes. Anal Chem. 2022;94(2):1029–36. https://doi.org/10.1021/acs.analchem.1c03991 . DOI
Liu JL, Ma YC, Yang T, Hu R, Yang YH. A single nucleotide polymorphism electrochemical sensor based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probes. Mikrochim Acta. 2021;188(8):266. https://doi.org/10.1007/s00604-021-04924-9 . DOI
Raoof JB, Ojani R, Golabi SM, Hamidi-Asl E, Hejazi MS. Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide. Sens Actuators B Chem. 2011;157(1):195–201. https://doi.org/10.1016/j.snb.2011.03.049 . DOI
Bodulev OL, Sakharov IY. Isothermal nucleic acid amplification techniques and their use in bioanalysis. Biochem (Mosc). 2020;85(2):147–66. https://doi.org/10.1134/s0006297920020030 . DOI
Deng H, Gao Z. Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal Chim Acta. 2015;853:30–45. https://doi.org/10.1016/j.aca.2014.09.037 . DOI
Weng X-H, Xu X-W, Wang C-L, Lin W-W, Liu A-L, Chen W, Lin X-H. Genotyping of common EGFR mutations in lung cancer patients by electrochemical biosensor. J Pharm Biomed Anal. 2018;150:176–82. https://doi.org/10.1016/j.jpba.2017.12.015 . DOI
Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19(3):225–32. https://doi.org/10.1038/898 . DOI
Baner J, Nilsson M, Mendel-Hartvig M, Landegren U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 1998;26(22):5073–8. https://doi.org/10.1093/nar/26.22.5073 . DOI
Zhu X, Feng C, Zhang B, Tong H, Gao T, Li G. A netlike rolling circle nucleic acid amplification technique. Analyst. 2015;140(1):74–8. https://doi.org/10.1039/C4AN01711K . DOI
Dahl F, Baner J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M. Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci USA. 2004;101(13):4548–53. https://doi.org/10.1073/pnas.0400834101 . DOI
Wang D, Hu L, Zhou H, Abdel-Halim ES, Zhu J-J. Molecular beacon structure mediated rolling circle amplification for ultrasensitive electrochemical detection of microRNA based on quantum dots tagging. Electrochem Commun. 2013;33:80–3. https://doi.org/10.1016/j.elecom.2013.04.030 . DOI
Wang S, Lu S, Zhao J, Ye J, Huang J, Yang X. An electric potential modulated cascade of catalyzed hairpin assembly and rolling chain amplification for microRNA detection. Biosens Bioelectron. 2019;126:565–71. https://doi.org/10.1016/j.bios.2018.09.088 . DOI
Li B, Yin H, Zhou Y, Wang M, Wang J, Ai S. Photoelectrochemical detection of miRNA-319a in rice leaf responding to phytohormones treatment based on CuO-CuWO4 and rolling circle amplification. Sens Actuators B Chem. 2018;255:1744–52. https://doi.org/10.1016/j.snb.2017.08.192 . DOI
Zhang S, Wu Z, Shen G, Yu R. A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Biosens Bioelectron. 2009;24(11):3201–7. https://doi.org/10.1016/j.bios.2009.03.012 . DOI
Geng Y, Wu J, Shao L, Yan F, Ju H. Sensitive colorimetric biosensing for methylation analysis of p16/CDKN2 promoter with hyperbranched rolling circle amplification. Biosens Bioelectron. 2014;61:593–7. https://doi.org/10.1016/j.bios.2014.06.010 . DOI
Sakhabutdinova AR, Maksimova MA, Garafutdinov RR. Synthesis of circular DNA templates with T4 RNA ligase for rolling circle amplification. Mol Biol. 2017;51(4):639–46. https://doi.org/10.1134/s0026893317040161 . DOI
Li X, Luo J, Xiao P, Shi X, Tang C, Lu Z. Genotyping of multiple single nucleotide polymorphisms with hyperbranched rolling circle amplification and microarray. Clin Chim Acta. 2009;399(1):40–4. https://doi.org/10.1016/j.cca.2008.08.012 . DOI
Moehling TJ, Choi G, Dugan LC, Salit M, Meagher RJ. LAMP diagnostics at the point-of-care: emerging trends and perspectives for the developer community. Expert Rev Mol Diagn. 2021;21(1):43–61. https://doi.org/10.1080/14737159.2021.1873769 . DOI
Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): Expansion of its practical application as a tool to achieve universal health coverage. J Infect Chemother. 2020;26(1):13–7. https://doi.org/10.1016/j.jiac.2019.07.020 . DOI
Nzelu CO, Kato H, Peters NC (2019) Loop-mediated isothermal amplification (LAMP): An advanced molecular point-of-care technique for the detection of Leishmania infection. PLOS Negl Trop Dis 13 (11). https://doi.org/10.1371/journal.pntd.0007698
Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 2015;5:770. https://doi.org/10.3389/fmicb.2014.00770 . DOI
Bartosik M, Durikova H, Vojtesek B, Anton M, Jandakova E, Hrstka R. Electrochemical chip-based genomagnetic assay for detection of high-risk human papillomavirus DNA. Biosens Bioelectron. 2016;83:300–5. https://doi.org/10.1016/j.bios.2016.04.035 . DOI
Izadi N, Sebuyoya R, Moranova L, Hrstka R, Anton M, Bartosik M. Electrochemical bioassay coupled to LAMP reaction for determination of high-risk HPV infection in crude lysates. Anal Chim Acta. 2021;1187: 339145. https://doi.org/10.1016/j.aca.2021.339145 . DOI
Bartosik M, Jirakova L, Anton M, Vojtesek B, Hrstka R. Genomagnetic LAMP-based electrochemical test for determination of high-risk HPV16 and HPV18 in clinical samples. Anal Chim Acta. 2018;1042:37–43. https://doi.org/10.1016/j.aca.2018.08.020 . DOI
Anton M, Moranova L, Hrstka R, Bartosik M. Application of an electrochemical LAMP-based assay for screening of HPV16/HPV18 infection in cervical samples. Anal Methods. 2020;12(6):822–9. https://doi.org/10.1039/c9ay02383f . DOI
Zhi X, Deng M, Yang H, Gao G, Wang K, Fu H, Zhang Y, Chen D, Cui D. A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors. Biosens Bioelectron. 2014;54:372–7. https://doi.org/10.1016/j.bios.2013.11.025 . DOI
Leonardo S, Toldra A, Campas M. Biosensors based on isothermal DNA amplification for bacterial detection in food safety and environmental monitoring Sensors. 2021;21(2):602. https://doi.org/10.3390/s21020602 . DOI
Huang TT, Liu SC, Huang CH, Lin CJ, Huang ST. An integrated real-time electrochemical LAMP device for pathogenic bacteria detection in food. Electroanalysis. 2018;30(10):2397–404. https://doi.org/10.1002/elan.201800382 . DOI
Liu X, Zhang C, Zhao M, Liu K, Li H, Li N, Gao L, Yang X, Ma T, Zhu J, Hui W, Hua K, Cui Y. A direct isothermal amplification system adapted for rapid SNP genotyping of multifarious sample types. Biosens Bioelectron. 2018;115:70–6. https://doi.org/10.1016/j.bios.2018.05.021 . DOI
Ren Y, Li Y, Duan X, Wang H, Wang H, Li Z. One-step quantitative single nucleotide polymorphism (SNP) diagnosis by modified loop-mediated isothermal amplification (mLAMP). ChemistrySelect. 2019;4(4):1423–7. https://doi.org/10.1002/slct.201802693 . DOI
Ikeda S, Takabe K, Inagaki M, Funakoshi N, Suzuki K. Detection of gene point mutation in paraffin sections using in situ loop-mediated isothermal amplification. Pathol Int. 2007;57(9):594–9. https://doi.org/10.1111/j.1440-1827.2007.02144.x . DOI
Ortiz M, Jauset-Rubio M, Kodr D, Simonova A, Hocek M, O’Sullivan CK. Solid-phase recombinase polymerase amplification using ferrocene-labelled dNTPs for electrochemical detection of single nucleotide polymorphisms. Biosens Bioelectron. 2022;198: 113825. https://doi.org/10.1016/j.bios.2021.113825 . DOI
Yang J, Wu R, Li Y, Wang Z, Pan L, Zhang Q, Lu Z, Zhang C. Entropy-driven DNA logic circuits regulated by DNAzyme. Nucleic Acids Res. 2018;46(16):8532–41. https://doi.org/10.1093/nar/gky663 . DOI
Thapa K, Liu W, Wang R. Nucleic acid-based electrochemical biosensor: recent advances in probe immobilization and signal amplification strategies. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(1): e1765. https://doi.org/10.1002/wnan.1765 . DOI
Wang M, Zhang R, Li J. CRISPR/cas systems redefine nucleic acid detection: principles and methods. Biosens Bioelectron. 2020;165: 112430. https://doi.org/10.1016/j.bios.2020.112430 . DOI
van Dongen JE, Berendsen JTW, Steenbergen RDM, Wolthuis RMF, Eijkel JCT, Segerink LI. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosens Bioelectron. 2020;166: 112445. https://doi.org/10.1016/j.bios.2020.112445 . DOI
Phan QA, Truong LB, Medina-Cruz D, Dincer C, Mostafavi E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens Bioelectron. 2022;197: 113732. https://doi.org/10.1016/j.bios.2021.113732 . DOI
Yang Y, Yang J, Gong F, Zuo P, Tan Z, Li J, Xie C, Ji X, Li W, He Z. Combining CRISPR/Cas12a with isothermal exponential amplification as an ultrasensitive sensing platform for microRNA detection. Sens Actuators B Chem. 2022;367: 132158. https://doi.org/10.1016/j.snb.2022.132158 . DOI
Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A, Smith K, Hajian R, Gasiunas G, Kutanovas S, Kim D, Parkinson J, Dickerson K, Ripoll J-J, Peytavi R, Lu H-W, Barron F, Goldsmith BR, Collins PG, Conboy IM, Siksnys V, Aran K. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng. 2021;5(7):713–25. https://doi.org/10.1038/s41551-021-00706-z . DOI
Diaz-Fernandez A, Lorenzo-Gomez R, Miranda-Castro R, de-los-Santos-Alvarez N, Lobo-Castanon MJ,. Electrochemical aptasensors for cancer diagnosis in biological fluids – a review. Anal Chim Acta. 2020;1124:1–19. https://doi.org/10.1016/j.aca.2020.04.022 . DOI
Campuzano S, Yanez-Sedeno P, Pingarrón JM. Electrochemical genosensing of circulating biomarkers Sensors. 2017;17(4):866. https://doi.org/10.3390/s17040866 . DOI
Huang Y, Zhu J, Li G, Chen Z, Jiang J-H, Shen G-L, Yu R-Q. Electrochemical detection of point mutation based on surface hybridization assay conjugated allele-specific polymerase chainreaction. Biosens Bioelectron. 2013;42:526–31. https://doi.org/10.1016/j.bios.2012.10.033 . DOI
Nilyanimit P. Comparison of detection sensitivity for human papillomavirus between self-collected vaginal swabs and physician-collected cervical swabs by electrochemical DNA chip. Asian Pac J Cancer Prev. 2014;15(24):10809–12. https://doi.org/10.7314/APJCP.2014.15.24.10809 . DOI
Quinchia J, Echeverri D, Cruz-Pacheco AF, Maldonado ME, Orozco J. Electrochemical biosensors for determination of colorectal tumor biomarkers. Micromachines. 2020;11(4):411. https://doi.org/10.3390/mi11040411 . DOI
Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protoc. 2016;11(7):1244–63. https://doi.org/10.1038/nprot.2016.071 . DOI