Bronchial Asthma as a Cardiovascular Risk Factor: A Prospective Observational Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
COOPERATIO
Research Projects (COOPERATIO)
PubMed
36289876
PubMed Central
PMC9599703
DOI
10.3390/biomedicines10102614
PII: biomedicines10102614
Knihovny.cz E-zdroje
- Klíčová slova
- asthma, atherosclerosis, biomarkers, endothelial dysfunction, high-sensitive CRP, reactive hyperemia index,
- Publikační typ
- časopisecké články MeSH
Introduction: Asthma as a chronic inflammatory disorder has been suggested as a risk factor for endothelial dysfunction (ED), but studies on the association between asthma and cardiovascular disease (CVD) risk are limited. Background: We assessed associations of ED with the severity of asthma, eosinophilic inflammation, lung function, and asthma control. Methods: 52 young asthmatics (median age of 25.22 years) and 45 healthy individuals were included. Demographic, clinical, and laboratory findings were recorded. We evaluated microvascular responsiveness by recording the reactive hyperemia index (RHI) indicating post-occlusive peripheral endothelium-dependent changes in vascular tone using the Itamar Medical EndoPAT2000. VCAM-1, ADMA, high-sensitive CRP (hsCRP), and E-selectin were measured. Results: Asthmatics had considerably lower RHI values (p < 0.001) with a dynamic decreasing trend by asthma severity and higher hsCRP levels (p < 0.001). A substantial increase in hsCRP and E-selectin with asthma severity (p < 0.05) was also observed. We confirmed a higher body mass index (BMI) in asthmatics (p < 0.001), especially in women and in severe asthma. Conclusions: We demonstrated the progression of CVD in asthmatics and the association of the ongoing deterioration of ED with the inflammatory severity, suggesting that the increased risk of CVD in young asthmatics is dependent on disease severity. The underlying mechanisms of risk factors for CVD and disease control require further study.
Zobrazit více v PubMed
Green F.H.Y., Butt J.C., James A.L., Carroll N.G. Abnormalities of the Bronchial Arteries in Asthma. Chest. 2006;130:1025–1033. doi: 10.1378/chest.130.4.1025. PubMed DOI
Fleming L., Murray C., Bansal A.T., Hashimoto S., Bisgaard H., Bush A., Frey U., Hedlin G., Singer F., van Aalderen W.M., et al. The Burden of Severe Asthma in Childhood and Adolescence: Results from the Paediatric U-BIOPRED Cohorts. Eur. Respir. J. 2015;46:1322–1333. doi: 10.1183/13993003.00780-2015. PubMed DOI
Makieieva N., Butov D., Vasylchenko Y., Biriukova M., Serhiienko K., Morozov O. Endothelial Dysfunction in Children with Clinically Stable and Exacerbated Asthma. Adv. Respir. Med. 2019;87:7–13. doi: 10.5603/ARM.a2019.0002. PubMed DOI
Lee H.M., Truong S.T., Wong N.D. Association of Adult-Onset Asthma with Specific Cardiovascular Conditions. Respir. Med. 2012;106:948–953. doi: 10.1016/j.rmed.2012.02.017. PubMed DOI
Liu H., Fu Y., Wang K. Asthma and Risk of Coronary Heart Disease. Ann. Allergy Asthma Immunol. 2017;118:689–695. doi: 10.1016/j.anai.2017.03.012. PubMed DOI
Voelkel N.F., Gomez-Arroyo J., Mizuno S. COPD/Emphysema: The Vascular Story. Pulm. Circ. 2011;1:320–326. doi: 10.4103/2045-8932.87295. PubMed DOI PMC
Green C.E., Turner A.M. The Role of the Endothelium in Asthma and Chronic Obstructive Pulmonary Disease (COPD) Respir. Res. 2017;18:20. doi: 10.1186/s12931-017-0505-1. PubMed DOI PMC
Takahashi T., Kobayashi S., Fujino N., Suzuki T., Ota C., Tando Y., Yamada M., Yanai M., Yamaya M., Kurosawa S., et al. Annual FEV1Changes and Numbers of Circulating Endothelial Microparticles in Patients with COPD: A Prospective Study. BMJ Open. 2014;4:e004571. doi: 10.1136/bmjopen-2013-004571. PubMed DOI PMC
Thomashow M.A., Shimbo D., Parikh M.A., Hoffman E.A., Vogel-Claussen J., Hueper K., Fu J., Liu C.-Y., Bluemke D.A., Ventetuolo C.E., et al. Endothelial Microparticles in Mild Chronic Obstructive Pulmonary Disease and Emphysema. The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease Study. Am. J. Respir. Crit. Care Med. 2013;188:60–68. doi: 10.1164/rccm.201209-1697OC. PubMed DOI PMC
Hisata S., Racanelli A.C., Kermani P., Schreiner R., Houghton S., Palikuqi B., Kunar B., Zhou A., McConn K., Capili A., et al. Reversal of Emphysema by Restoration of Pulmonary Endothelial Cells. J. Exp. Med. 2021;218:e20200938. doi: 10.1084/jem.20200938. PubMed DOI PMC
Reverri E.J., Morrissey B.M., Cross C.E., Steinberg F.M. Inflammation, Oxidative Stress, and Cardiovascular Disease Risk Factors in Adults with Cystic Fibrosis. Free Radic. Biol. Med. 2014;76:261–277. doi: 10.1016/j.freeradbiomed.2014.08.005. PubMed DOI
Tucker M.A., Fox B.M., Seigler N., Rodriguez-Miguelez P., Looney J., Thomas J., McKie K.T., Forseen C., Davison G.W., Harris R.A. Endothelial Dysfunction in Cystic Fibrosis: Role of Oxidative Stress. Oxid. Med. Cell. Longev. 2019:1629638. doi: 10.1155/2019/1629638. PubMed DOI PMC
Olveira G., Olveira C., Dorado A., García-Fuentes E., Rubio E., Tinahones F., Soriguer F., Murri M. Cellular and Plasma Oxidative Stress Biomarkers Are Raised in Adults with Bronchiectasis. Clin. Nutr. 2013;32:112–117. doi: 10.1016/j.clnu.2012.06.002. PubMed DOI
Declercq M., Treps L., Carmeliet P., Witters P. The Role of Endothelial Cells in Cystic Fibrosis. J. Cyst. Fibros. 2019;18:752–761. doi: 10.1016/j.jcf.2019.07.005. PubMed DOI
Curjuric I., Imboden M., Bettschart R., Caviezel S., Dratva J., Pons M., Rothe T., Schmidt-Trucksäss A., Stolz D., Thun G.A., et al. Alpha-1 Antitrypsin Deficiency: From the Lung to the Heart? Atherosclerosis. 2018;270:166–172. doi: 10.1016/j.atherosclerosis.2018.01.042. PubMed DOI
Duckers J.M., Shale D.J., Stockley R.A., Gale N.S., Evans B.A., Cockcroft J.R., Bolton C.E. Cardiovascular and Musculoskeletal Co-Morbidities in Patients with Alpha 1 Antitrypsin Deficiency. Respir. Res. 2010;11:173. doi: 10.1186/1465-9921-11-173. PubMed DOI PMC
Lavie L. Oxidative Stress in Obstructive Sleep Apnea and Intermittent Hypoxia—Revisited—The Bad Ugly and Good: Implications to the Heart and Brain. Sleep Med. Rev. 2015;20:27–45. doi: 10.1016/j.smrv.2014.07.003. PubMed DOI
Heck S., Nguyen J., Le D.-D., Bals R., Dinh Q.T. Pharmacological Therapy of Bronchial Asthma: The Role of Biologicals. Int. Arch. Allergy Immunol. 2015;168:241–252. doi: 10.1159/000443930. PubMed DOI
Bäck M., Hansson G.K. Anti-Inflammatory Therapies for Atherosclerosis. Nat. Rev. Cardiol. 2015;12:199–211. doi: 10.1038/nrcardio.2015.5. PubMed DOI
Hamburg N.M., Keyes M.J., Larson M.G., Vasan R.S., Schnabel R., Pryde M.M., Mitchell G.F., Sheffy J., Vita J.A., Benjamin E.J. Cross-Sectional Relations of Digital Vascular Function to Cardiovascular Risk Factors in the Framingham Heart Study. Circulation. 2008;117:2467–2474. doi: 10.1161/CIRCULATIONAHA.107.748574. PubMed DOI PMC
Kanazawa H., Nomura S., Asai K. Roles of Angiopoietin-1 and Angiopoietin-2 on Airway Microvascular Permeability in Asthmatic Patients. Chest. 2007;131:1035–1041. doi: 10.1378/chest.06-2758. PubMed DOI
Simcock D.E., Kanabar V., Clarke G.W., O’Connor B.J., Lee T.H., Hirst S.J. Proangiogenic Activity in Bronchoalveolar Lavage Fluid from Patients with Asthma. Am. J. Respir. Crit. Care Med. 2007;176:146–153. doi: 10.1164/rccm.200701-042OC. PubMed DOI
Kreslová M., Sýkorová A., Jehlička P., Kobr J., Sýkora J. Endothelial Dysfunction in Children and Young Adults: Clinical Implications and New Perspectives. In: Berhardt L.V., editor. Advances in Medicine and Biology. Volume 192. Nova Science Publishers; New York, NY, USA: 2022. pp. 99–195. DOI
Dweik R.A., Boggs P.B., Erzurum S.C., Irvin C.G., Leigh M.W., Lundberg J.O., Olin A.-C., Plummer A.L., Taylor D.R. An Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (FeNO) for Clinical Applications. Am. J. Respir. Crit. Care Med. 2011;184:602–615. doi: 10.1164/rccm.9120-11ST. PubMed DOI PMC
Widlansky M.E., Gokce N., Keaney J.F., Jr., Vita J.A. The Clinical Implications of Endothelial Dysfunction. J. Am. Coll. Cardiol. 2003;42:1149–1160. doi: 10.1016/S0735-1097(03)00994-X. PubMed DOI
He X., Cheng G., He L., Liao B., Du Y., Xie X., Zhang S., Li G., Wang Y., Zhang Y. Adults with Current Asthma but Not Former Asthma Have Higher All-Cause and Cardiovascular Mortality: A Population-Based Prospective Cohort Study. Sci. Rep. 2021;11:1329. doi: 10.1038/s41598-020-79264-4. PubMed DOI PMC
Yildiz P., Oflaz H., Cine N., Genchallac H., Erginel-Ünaltuna N., Yildiz A., Yilmaz V. Endothelial Dysfunction in Patients with Asthma: The Role of Polymorphisms of ACE and Endothelial NOS Genes. J. Asthma. 2004;41:159–166. doi: 10.1081/JAS-120026073. PubMed DOI
Cortez e Castro M., Ferreira J., Matos A., Bicho M. Endothelial Dysfunction in Asthma: Enos, Inos and Ace Polymorphisms. ERJ Open Res. 2020;6:45. doi: 10.1183/23120541.lsc-2020.45. DOI
Bonetti P.O., Pumper G.M., Higano S.T., Holmes D.R., Jr., Kuvin J.T., Lerman A. Noninvasive Identification of Patients with Early Coronary Atherosclerosis by Assessment of Digital Reactive Hyperemia. J. Am. Coll. Cardiol. 2004;44:2137–2141. doi: 10.1016/j.jacc.2004.08.062. PubMed DOI
Tanaka A., Tomiyama H., Maruhashi T., Matsuzawa Y., Miyoshi T., Kabutoya T., Kario K., Sugiyama S., Munakata M., Ito H., et al. Physiological Diagnostic Criteria for Vascular Failure. Hypertension. 2018;72:1060–1071. doi: 10.1161/HYPERTENSIONAHA.118.11554. PubMed DOI
Terl M., Sedlák V., Cap P., Dvořáková R., Kašák V., Kočí T., Novotna B., Seberova E., Panzner P., Zindr V. Asthma management: A new phenotype-based approach using presence of eosinophilia and allergy. Allergy. 2017;72:1279–1287. doi: 10.1111/all.13165. PubMed DOI
Nichols M., Teufel R., Miller S., Madisetti M., Giovanni C.S., Chike-Harris K., Jones L., Prentice M., Ruggiero K., Kelechi T. Managing Asthma and Obesity Related Symptoms (MATADORS): An MHealth Intervention to Facilitate Symptom Self-Management among Youth. Int. J. Environ. Res. Public Health. 2020;17:7750. doi: 10.3390/ijerph17217750. PubMed DOI PMC
Hadi H.A., Carr C.S., Al Suwaidi J. Endothelial dysfunction: Cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 2005;1:183–198. PubMed PMC
Tattersall M.C., Guo M., Korcarz C.E., Gepner A.D., Kaufman J.D., Liu K.J., Barr R.G., Donohue K.M., McClelland R.L., Delaney J.A., et al. Asthma Predicts Cardiovascular Disease Events. Arterioscler. Thromb. Vasc. Biol. 2015;35:1520–1525. doi: 10.1161/ATVBAHA.115.305452. PubMed DOI PMC
Steinmann M., Abbas C., Singer F., Casaulta C., Regamey N., Haffner D., Fischer D.-C., Simonetti G.D. Arterial Stiffness Is Increased in Asthmatic Children. Eur. J. Pediatr. 2014;174:519–523. doi: 10.1007/s00431-014-2423-2. PubMed DOI
Vijayakumar J., Subramanian S., Singh P., Corsini E., Fontanez S., Lawler M., Kaplan R., Brady T.J., Hoffmann U., Tawakol A. Arterial Inflammation in Bronchial Asthma. J. Nucl. Cardiol. 2013;20:385–395. doi: 10.1007/s12350-013-9697-z. PubMed DOI
Holguin F., Grasemann H., Sharma S., Winnica D., Wasil K., Smith V., Cruse M.H., Perez N., Coleman E., Scialla T.J., et al. L-Citrulline increases nitric oxide and improves control in obese asthmatics. JCI Insight. 2019;4:e131733. doi: 10.1172/jci.insight.131733. PubMed DOI PMC
Kreslová M., Sýkorová A., Bittenglová R., Schwarz J., Pomahačová R., Jehlička P., Kobr J., Trefil L., Sýkora J. Age-Related Progression of Microvascular Dysfunction in Cystic Fibrosis: New Detection Ways and Clinical Outcomes. Physiol. Res. 2021;70:893–903. doi: 10.33549/physiolres.934743. PubMed DOI PMC
Hamzaoui A., Ammar J., El Mekki F., Borgi O., Ghrairi H., Ben Brahim M., Hamzaoui K. Elevation of Serum Soluble E-Selectin and VCAM-1 in Severe Asthma. Mediat. Inflamm. 2001;10:339–342. doi: 10.1080/09629350120102361. PubMed DOI PMC
Kadakal F., Aras G., Kanmaz D., Purisa S., Uzumcu M., Iatk E., Bratfalean D. The assessment of high sensitivity C-reactive protein as a systemic marker in moderate asthma patients and changing levels by inhaled corticosteroids. JPMA J. Pak. Med. Assoc. 2013;63:893–898. PubMed
Morrison K.M., Dyal L., Conner W., Helden E., Newkirk L., Yusuf S., Lonn E. Cardiovascular Risk Factors and Non-Invasive Assessment of Subclinical Atherosclerosis in Youth. Atherosclerosis. 2010;208:501–505. doi: 10.1016/j.atherosclerosis.2009.07.034. PubMed DOI
Karthikeyan R., Krishnamoorthy S., Maamidi S., Kaza A.M., Balasubramanian N. Effect of inhaled corticosteroids on systemic inflammation in asthma. Perspect. Clin. Res. 2014;5:75–79. doi: 10.4103/2229-3485.128026. PubMed DOI PMC
Atsuta J., Plitt J., Bochner B.S., Schleimer R.P. Inhibition of VCAM-1 expression in human bronchial epithelial cells by glucocorticoids. Am. J. Respir. Cell Mol. Biol. 1999;20:643–650. doi: 10.1165/ajrcmb.20.4.3265. PubMed DOI
Masopustová A., Kreslová M., Sýkora J., Jehlička P., Trefil L., Kobr J. Endothelial dysfunction in Children and Young Adults: A combined Diagnostic Approach of Plethysmographic and Biochemical Markers. In: Duncan L.T., editor. Advances in Health and Disease. 1st ed. Volume 6. Nova Science Publishers; New York, NY, USA: 2018. pp. 189–202.
Jehlička P., Huml M., Schwarz J., Trefil L., Kobr J., Sýkora J. Reactive Hyperaemia Index as a Marker of Endothelial Dysfunction in Children with Crohn’s Disease Is Significantly Lower than Healthy Controls. Acta Paediatr. 2014;103:e55–e60. doi: 10.1111/apa.12467. PubMed DOI
Masopustová A., Jehlička P., Huml M., Votava T., Trefil L., Kreslová M., Sýkora J. Plethysmographic and Biochemical Markers in the Diagnosis of Endothelial Dysfunction in Pediatric Acute Lymphoblastic Leukemia Survivors—New Applications. Physiol. Res. 2018;67:903–909. doi: 10.33549/physiolres.933754. PubMed DOI
Hoshino M., Takahashi M., Takai Y., Sim J., Aoike N. Inhaled Corticosteroids Decrease Vascularity of the Bronchial Mucosa in Patients with Asthma. Clin. Exp. Allergy. 2001;31:722–730. doi: 10.1046/j.1365-2222.2001.01071.x. PubMed DOI
Wang K., Liu C.-T., Wu Y.-H., Feng Y.-L., Bai H. Budesonide/Formoterol Decreases Expression of Vascular Endothelial Growth Factor (VEGF) and VEGF Receptor 1 within Airway Remodelling in Asthma. Adv. Ther. 2008;25:342–354. doi: 10.1007/s12325-008-0048-4. PubMed DOI
Li J., Panganiban R., Kho A.T., McGeachie M.J., Farnam L., Chase R.P., Weiss S.T., Lu Q., Tantisira K.G. Circulating MicroRNAs and Treatment Response in Childhood Asthma. Am. J. Respir. Cell Mol. Biol. 2020;202:65–72. doi: 10.1164/rccm.201907-1454OC. PubMed DOI PMC
Wei B., Dang Y.H., Liu X.P., Li M. Protective effect of inhaled corticosteroid on children with asthma with Mycoplasma pneumoniae pneumonia. Front. Pediatr. 2022;10:908857. doi: 10.3389/fped.2022.908857. PubMed DOI PMC
Glassberg J., Minnitti C., Cromwell C., Cytryn L., Kraus T., Skloot G.S., Connor J.T., Rahman A.H., Meurer W.J. Inhaled steroids reduce pain and sVCAM levels in individuals with sickle cell disease: A triple-blind, randomized trial. Am. J. Hematol. 2017;92:622–631. doi: 10.1002/ajh.24742. PubMed DOI PMC
Wanner A., Mendes E.S. Airway Endothelial Dysfunction in Asthma and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2010;182:1344–1351. doi: 10.1164/rccm.201001-0038PP. PubMed DOI
Hoxha M., Tedesco C.C., Quaglin S., Malaj V., Pustina L., Capra V., Evans J.F., Sala A., Rovati G.E. Montelukast Use Decreases Cardiovascular Events in Asthmatics. Front. Pharmacol. 2021;11:611561. doi: 10.3389/fphar.2020.611561. PubMed DOI PMC
Yeryomenko G., Bezditko T., Dubuske L. Endothelial Dysfunction in Patients Having Asthma with Diabetes Mellitus Type 2 and Obesity. J. Allergy Clin. Immunol. 2020;145:AB73. doi: 10.1016/j.jaci.2019.12.655. DOI
Lee H.M., Liu M.A., Barrett-Connor E., Wong N.D. Association of Lung Function with Coronary Heart Disease and Cardiovascular Disease Outcomes in Elderly: The Rancho Bernardo Study. Respir. Med. 2014;108:1779–1785. doi: 10.1016/j.rmed.2014.09.016. PubMed DOI PMC
Kato G., Takahashi K., Izuhara K., Komiya K., Kimura S., Hayashi S. Markers that can Reflect Asthmatic Activity before and after Reduction of Inhaled Corticosteroids: A Pilot Study. Biomark. Insights. 2013;8:97–105. doi: 10.4137/BMI.S12537. PubMed DOI PMC
Fricker M., Heaney L.G., Upham J.W. Can biomarkers help us hit targets in difficult-to-treat asthma? Respirology. 2017;22:430–442. doi: 10.1111/resp.13014. PubMed DOI
Hua M.-L., Li L., Diao L.-L. Bronchial Asthma and Risk of 4 Specific Cardiovascular Diseases and Cardiovascular Mortality: A Meta-Analysis of Cohort Studies. Eur. Rev. Med. Pharmacol. Sci. 2022;26:5081–5091. doi: 10.26355/eurrev_202207_29294. PubMed DOI
Keselman A., Heller N. Estrogen Signaling Modulates Allergic Inflammation and Contributes to Sex Differences in Asthma. Front. Immunol. 2015;6:568. doi: 10.3389/fimmu.2015.00568. PubMed DOI PMC
Çelebi Sözener Z., Aydın Ö., Mungan D., Mısırlıgil Z. Obesity-Asthma Phenotype: Effect of Weight Gain on Asthma Control in Adults. Allergy Asthma Proc. 2016;37:311–317. doi: 10.2500/aap.2016.37.3949. PubMed DOI
Bel E.H., Sousa A., Fleming L., Bush A., Chung K.F., Versnel J., Wagener A.H., Wagers S.S., Sterk P.J., Compton C.H. Diagnosis and Definition of Severe Refractory Asthma: An International Consensus Statement from the Innovative Medicine Initiative (IMI) Thorax. 2010;66:910–917. doi: 10.1136/thx.2010.153643. PubMed DOI
Salonen I., Huttunen K., Hirvonen M.-R., Dufva J., Groundstroem K., Dufva H., Salonen R.O. Exhaled Nitric Oxide and Atherosclerosis. Eur. J. Clin. Investig. 2012;42:873–880. doi: 10.1111/j.1365-2362.2012.02662.x. PubMed DOI
Shoda T., Futamura K., Orihara K., Emi-Sugie M., Saito H., Matsumoto K., Matsuda A. Recent Advances in Understanding the Roles of Vascular Endothelial Cells in Allergic Inflammation. Allergol. Int. 2016;65:21–29. doi: 10.1016/j.alit.2015.08.001. PubMed DOI
Ghiro L., Zanconato S., Rampon O., Piovan V., Pasquale M.F., Baraldi E. Effect of montelukast added to inhaled corticosteroids on fractional exhaled nitric oxide in asthmatic children. Eur. Respir. J. 2002;20:630–634. doi: 10.1183/09031936.02.01512002. PubMed DOI
Yin S.S., Liu H., Gao X. Elevated fractional exhaled nitric oxide (FeNO) is a clinical indicator of uncontrolled asthma in children receiving inhaled corticosteroids. Int. J. Clin. Pharmacol. Ther. 2017;55:66–77. doi: 10.5414/CP202570. PubMed DOI
Syk J., Malinovschi A., Borres M.P., Undén A.L., Andreasson A., Lekander M., Alving K. Parallel reductions of IgE and exhaled nitric oxide after optimized anti-inflammatory asthma treatment. Immun. Inflamm. Dis. 2016;4:182–190. doi: 10.1002/iid3.103. PubMed DOI PMC
Rossi B., Constantin G. Anti-selectin therapy for the treatment of inflammatory diseases. Inflamm. Allergy Drug Targets. 2008;7:85–93. doi: 10.2174/187152808785107633. PubMed DOI
Wolkerstorfer A., Savelkoul H.F., de Waard van der Spek F.B., Neijens H.J., van Meurs T., Oranje A.P. Soluble E-selectin and soluble ICAM-1 levels as markers of the activity of atopic dermatitis in children. Pediatr. Allergy Immunol. 2003;14:302–306. doi: 10.1034/j.1399-3038.2003.00057.x. PubMed DOI
Jahnova E., Horvathova M., Gazdik F., Weissova S. Effects of selenium supplementation on expression of adhesion molecules in corticoid-dependent asthmatics. Bratisl. Lek. Listy. 2002;103:12–16. PubMed
Matera M.G., Page C.P., Calzetta L., Rogliani P., Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol. Rev. 2020;72:218–252. doi: 10.1124/pr.119.018150. PubMed DOI
Page C.P., Cotter T., Kilfeather S., Sullivan P., Spina D., Costello J.F. Effect of chronic theophylline treatment on the methacholine dose-response curve in allergic asthmatic subjects. Eur. Respir. J. 1998;12:24–29. doi: 10.1183/09031936.98.12010024. PubMed DOI
Campisi R., Crimi C., Intravaia R., Strano S., Noto A., Foschino M.P., Valenti G., Viviano V., Pelaia C., Ricciardi L., et al. Adherence to omalizumab: A multicenter “real-world” study. World Allergy Organ. J. 2020;13:100103. doi: 10.1016/j.waojou.2020.100103. PubMed DOI PMC
Crimi C., Campisi R., Nolasco S., Cacopardo G., Intravaia R., Porto M., Impellizzeri P., Pelaia C., Crimi N. Mepolizumab effectiveness in patients with severe eosinophilic asthma and co-presence of bronchiectasis: A real-world retrospective pilot study. Respir. Med. 2021;185:106491. doi: 10.1016/j.rmed.2021.106491. PubMed DOI
Pasha M.A., Jourd’heuil D., Jourd’heuil F., Mahon L., Romero F., Feustel P.J., Evans M., Smith T., Mitchell J., Gendapodi P., et al. The effect of omalizumab on small airway inflammation as measured by exhaled nitric oxide in moderate-to-severe asthmatic patients. Allergy Asthma Proc. 2014;35:241–249. doi: 10.2500/aap.2014.35.3741. PubMed DOI
Tajiri T., Niimi A., Matsumoto H., Ito I., Oguma T., Otsuka K., Takeda T., Nakaji H., Inoue H., Iwata T., et al. Comprehensive efficacy of omalizumab for severe refractory asthma: A time-series observational study. Ann. Allergy Asthma Immunol. 2014;113:470–475.e2. doi: 10.1016/j.anai.2014.06.004. PubMed DOI
Bakakos A., Schleich F., Bakakos P. Biological Therapy of Severe Asthma and Nasal Polyps. J. Personal. Med. 2022;12:976. doi: 10.3390/jpm12060976. PubMed DOI PMC
Kirchnerová O.R., Valena T., Novosad J., Teřl M., Czech eXpeRience Study Group Real-world effectiveness and safety of omalizumab in patients with uncontrolled severe allergic asthma from the Czech Republic. Postepy Dermatol. Alergol. 2019;36:34–43. doi: 10.5114/ada.2018.76606. PubMed DOI PMC
Parulekar A.D., Diamant Z., Hanania N.A. Role of biologics targeting type 2 airway inflammation in asthma: What have we learned so far? Curr. Opin. Pulm. Med. 2017;23:3–11. doi: 10.1097/MCP.0000000000000343. PubMed DOI
Quaranta V.N., Dragonieri S., Crimi N., Crimi C., Santus P., Menzella F., Pelaia C., Scioscia G., Caruso C., Bargagli E., et al. Can Leukotriene Receptor Antagonist Therapy Improve the Control of Patients with Severe Asthma on Biological Therapy and Coexisting Bronchiectasis? A Pilot Study. J. Clin. Med. 2022;11:4702. doi: 10.3390/jcm11164702. PubMed DOI PMC
Ishibashi T., Kawamoto K., Matsuno K., Ishihara G., Baba T., Komori N. Peripheral Endothelial Function Can Be Improved by Daily Consumption of Water Containing over 7 Ppm of Dissolved Hydrogen: A Randomized Controlled Trial. PLoS ONE. 2020;15:e0233484. doi: 10.1371/journal.pone.0233484. PubMed DOI PMC
Selamet Tierney E.S., Newburger J.W., Gauvreau K., Geva J., Coogan E., Colan S.D., de Ferranti S.D. Endothelial Pulse Amplitude Testing: Feasibility and Reproducibility in Adolescents. J. Pediatr. 2009;154:901–905. doi: 10.1016/j.jpeds.2008.12.028. PubMed DOI
Kelly A.S., Marlatt K.L., Steinberger J., Dengel D.R. Younger Age Is Associated with Lower Reactive Hyperemic Index but Not Lower Flow-Mediated Dilation among Children and Adolescents. Atherosclerosis. 2014;234:410–414. doi: 10.1016/j.atherosclerosis.2014.03.031. PubMed DOI PMC