Iron-Sepiolite High-Performance Magnetorheological Polishing Fluid with Reduced Sedimentation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RP/CPS/2022/007
Ministry of Education Youth and Sports
IGA/FT/2022/007
Tomas Bata University in Zlín
PubMed
36293044
PubMed Central
PMC9603551
DOI
10.3390/ijms232012187
PII: ijms232012187
Knihovny.cz E-zdroje
- Klíčová slova
- 3D texture, clay, magnetorheology, polishing, sedimentation, slurry,
- MeSH
- jíl MeSH
- magnetismus MeSH
- nylony * MeSH
- železo * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jíl MeSH
- magnesium trisilicate MeSH Prohlížeč
- nylony * MeSH
- železo * MeSH
A sedimentation-stable magnetorheological (MR) polishing slurry on the basis of ferrofluid, iron particles, Al2O3, and clay nanofiller in the form of sepiolite intended for MR polishing has been designed, prepared, and its polishing efficiency verified. Added clay substantially improved sedimentation stability of the slurry, decreasing its sedimentation rate to a quarter of its original value (1.8 to 0.45 mg s-1) while otherwise maintaining its good abrasive properties. The magnetisation curve measurement proved that designed slurry is soft magnetic material with no hysteresis, and its further suitability for MR polishing was confirmed by its magnetorheology namely in the quadratically increased yield stress due to the effect of applied magnetic field (0 to 600 kA m-1). The efficiency of the MR polishing process was tested on the flat samples of injection-moulded polyamide and verified by surface roughness/3D texture measurement. The resulting new composition of the MR polishing slurry exhibits a long-term stable system with a wide application window in the MR polishing process.
Zobrazit více v PubMed
Xia Z.B., Fang F.Z., Ahearne E., Tao M.R. Advances in polishing of optical freeform surfaces: A review. J. Mater. Proc. Technol. 2020;286:116828. doi: 10.1016/j.jmatprotec.2020.116828. DOI
Bica I., Liu Y.D., Choi H.J. Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 2013;19:394–406. doi: 10.1016/j.jiec.2012.10.008. DOI
Ronzova A., Sedlacik M., Cvek M. Magnetorheological fluids based on core-shell carbonyl iron particles modified by various organosilanes: Synthesis, stability and performance. Soft Matter. 2021;17:1299–1306. doi: 10.1039/D0SM01785J. PubMed DOI
de Vicente J., Klingenberg D.J., Hidalgo-Alvarez R. Magnetorheological fluids: A review. Soft Matter. 2011;7:3701–3710. doi: 10.1039/c0sm01221a. DOI
Miao C.L., Shen R., Wang M.M., Shafrir S.N., Yang H., Jacobs S.D. Rheology of Aqueous Magnetorheological Fluid Using Dual Oxide-Coated Carbonyl Iron Particles. J. Am. Ceram. Soc. 2011;94:2386–2392.
Souza A.M., da Silva E.J., Ratay J., Yamaguchi H. Magnetic field-assisted finishing processes: From bibliometric analysis to future trends. J. Braz. Soc. Mech. Sci. Eng. 2022;44:327. doi: 10.1007/s40430-022-03641-5. DOI
Xie S.W., Sun Q.Q., Ying G.Y., Guo L.X., Huang Q., Peng Q.Y., Xu J.F. Ultra-precise surface processing of LYSO scintillator crystals for Positron Emission Tomography. Appl. Surf. Sci. 2019;469:573–581. doi: 10.1016/j.apsusc.2018.11.024. PubMed DOI PMC
Qian C., Tian Y.B., Fan Z.H., Sun Z.G., Ma Z. Investigation on rheological characteristics of magnetorheological shear thickening fluids mixed with micro CBN abrasive particles. Smart Mater. Struct. 2022;31:095004. doi: 10.1088/1361-665X/ac7bbd. DOI
Guo H.R., Wu Y.B. Ultrafine polishing of optical polymer with zirconia-coated carbonyl-iron-particle-based magnetic compound fluid slurry. Int. J. Adv. Manuf. Technol. 2016;85:253–261. doi: 10.1007/s00170-015-7929-x. DOI
Chen Z.J., Pan J.S., Yan Q.S., Huang Z.L., Zhang F.L., Chen S.M. Study on the rheological and polishing properties of electromagnetic two-phase composite particles with abrasive characteristics. Smart Mater. Struct. 2022;31:045012. doi: 10.1088/1361-665X/ac5478. DOI
Ashtiani M., Hashemabadi S.H., Ghaffari A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 2015;374:716–730. doi: 10.1016/j.jmmm.2014.09.020. DOI
Cheng H.B., Zuo L., Song J.H., Zhang Q.J., Wereley N.M. Magnetorheology and sedimentation behavior of an aqueous suspension of surface modified carbonyl iron particles. J. Appl. Phys. 2010;107:3. doi: 10.1063/1.3358613. DOI
Lee J.W., Hong K.P., Kwon S.H., Choi H.J., Cho M.W. Suspension Rheology and Magnetorheological Finishing Characteristics of Biopolymer-Coated Carbonyliron Particles. Ind. Eng. Chem. Res. 2017;56:2416–2424. doi: 10.1021/acs.iecr.6b03790. DOI
Ubaidillah, Sutrisno J., Purwanto A., Mazlan S.A. Recent Progress on Magnetorheological Solids: Materials, Fabrication, Testing, and Applications. Adv. Eng. Mater. 2015;17:563–597. doi: 10.1002/adem.201400258. DOI
Liu J.B., Li X.Y., Zhang Y.F., Tian D., Ye M.H., Wang C. Predicting the Material Removal Rate (MRR) in surface Magnetorheological Finishing (MRF) based on the synergistic effect of pressure and shear stress. Appl. Surf. Sci. 2020;504:144492. doi: 10.1016/j.apsusc.2019.144492. DOI
Kumari C., Chak S.K. A review on magnetically assisted abrasive finishing and their critical process parameters. Manuf. Rev. 2018;5:13. doi: 10.1051/mfreview/2018010. DOI
Bedi T.S., Singh A.K. Magnetorheological methods for nanofinishing—A review. Part. Sci. Technol. 2016;34:412–422. doi: 10.1080/02726351.2015.1081657. DOI
Kumari C., Chak S.K. Study on influential parameters of hybrid AFM processes: A review. Manuf. Rev. 2019;6:23. doi: 10.1051/mfreview/2019022. DOI
Plachy T., Kutalkova E., Sedlacik M., Vesel A., Masar M., Kuritka I. Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J. Ind. Eng. Chem. 2018;66:362–369. doi: 10.1016/j.jiec.2018.06.002. DOI
Choi H.J., Zhang W.L., Kim S., Seo Y. Core-Shell Structured Electro- and Magneto-Responsive Materials: Fabrication and Characteristics. Materials. 2014;7:7460–7471. doi: 10.3390/ma7117460. PubMed DOI PMC
Kim H.M., Kang S.H., Choi H.J. Polyaniline coated ZnFe2O4 microsphere and its electrorheological and magnetorheological response. Coll. Surf. A Physicochem. Eng. Asp. 2021;626:127079. doi: 10.1016/j.colsurfa.2021.127079. DOI
Zhang P., Dong Y.Z., Choi H.J., Lee C.H. Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid. J. Ind. Eng. Chem. 2018;68:342–349. doi: 10.1016/j.jiec.2018.08.005. DOI
Park B.J., Hong M.K., Choi H.J. Atom transfer radical polymerized PMMA/magnetite nanocomposites and their magnetorheology. Coll. Polym. Sci. 2009;287:501–504. doi: 10.1007/s00396-009-2013-4. DOI
Jamari S.K.M., Nordin N.A., Ubaidillah, Aziz S.A.A., Nazmi N., Mazlan S.A. Systematic Review on the Effects, Roles and Methods of Magnetic Particle Coatings in Magnetorheological Materials. Materials. 2020;13:5317. doi: 10.3390/ma13235317. PubMed DOI PMC
Hajalilou A., Abouzari-Lotf E., Abbasi-Chianeh V., Shojaei T.R., Rezaie E. Inclusion of octahedron-shaped ZnFe2O4 nanoparticles in combination with carbon dots into carbonyl iron based magnetorheological suspension as additive. J. Alloys Compd. 2018;737:536–548. doi: 10.1016/j.jallcom.2017.12.071. DOI
Xu J.H., Li J.Y., Cao J.G. Effects of fumed silica weight fraction on rheological properties of magnetorheological polishing fluids. Coll. Polym. Sci. 2018;296:1145–1156. doi: 10.1007/s00396-018-4332-9. DOI
Bai Y., Xue D.L., Zhang X.J. Polishing performance of magnetorheological finishing with flocculated and deflocculated aqueous polishing fluid. Opt. Eng. 2019;58:025104.
Kutalkova E., Plachy T., Sedlacik M. On the enhanced sedimentation stability and electrorheological performance of intelligent fluids based on sepiolite particles. J. Mol. Liquids. 2020;309:113120. doi: 10.1016/j.molliq.2020.113120. DOI
Marins J.A., Plachy T., Kuzhir P. Iron-sepiolite magnetorheological fluids with improved performances. J. Rheol. 2019;63:125–139.
Lopez-Lopez M.T., Kuzhir P., Lacis S., Bossis G., Gonzalez-Caballero F., Duran J.D.G. Magnetorheology for suspensions of solid particles dispersed in ferrofluids. J. Phys. Condens. Matter. 2006;18:S2803–S2813. doi: 10.1088/0953-8984/18/38/S18. DOI
Cho M.S., Choi H.J., Jhon M.S. Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer. 2005;46:11484–11488. doi: 10.1016/j.polymer.2005.10.029. DOI
Ginder J.M., Davis L.C., Elie L.D. Rheology of magnetorheological fluids: Models and measurements. Int. J. Mod. Phys. B. 1996;10:3293–3303. doi: 10.1142/S0217979296001744. DOI
Roupec J., Berka P., Mazurek I., Strecker Z., Kubik M., Machacek O., Andani M.T. A novel method for measurement of MR fluid sedimentation and its experimental verification. Smart Mater. Struct. 2017;26:13. doi: 10.1088/1361-665X/aa83f2. DOI
Cvek M., Mrlik M., Moucka R., Sedlacik M. A systematical study of the overall influence of carbon allotrope additives on performance, stability and redispersibility of magnetorheological fluids. Coll. Surf. A Physicochem. Eng. Asp. 2018;543:83–92. doi: 10.1016/j.colsurfa.2018.01.046. DOI
Zhuang G.Z., Zhang Z.P., Yang H., Tang J.J. Structures and rheological properties of organo-sepiolite in oil-based drilling fluids. Appl. Clay Sci. 2018;154:43–51.
Hong K.P., Song K.H., Cho M.W., Kwon S.H., Choi H.J. Magnetorheological properties and polishing characteristics of silica-coated carbonyl iron magnetorheological fluid. J. Intell. Mater. Syst. Struct. 2018;29:137–146. doi: 10.1177/1045389X17730912. DOI
Sedlacik M., Pavlinek V. A tensiometric study of magnetorheological suspensions’ stability. Rsc. Adv. 2014;4:58377–58385. doi: 10.1039/C4RA11842A. DOI
Milde R., Bilek O., Sedlacik M., Kovarik M. Construction of magnetorheological device for finishing of non-metallic materials. In: Behulova M., Kozisek Z., Potucek Z., editors. Development of Materials Science in Research and Education. Volume 726 IOP Publishing Ltd.; Bristol, UK: 2020.
Guo C., Liu J., Li X.H., Yang S.Q. Effect of cavitation bubble on the dispersion of magnetorheological polishing fluid under ultrasonic preparation. Ultrason. Sonochem. 2021;79:105782. doi: 10.1016/j.ultsonch.2021.105782. PubMed DOI PMC