Iron-Sepiolite High-Performance Magnetorheological Polishing Fluid with Reduced Sedimentation

. 2022 Oct 13 ; 23 (20) : . [epub] 20221013

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36293044

Grantová podpora
RP/CPS/2022/007 Ministry of Education Youth and Sports
IGA/FT/2022/007 Tomas Bata University in Zlín

A sedimentation-stable magnetorheological (MR) polishing slurry on the basis of ferrofluid, iron particles, Al2O3, and clay nanofiller in the form of sepiolite intended for MR polishing has been designed, prepared, and its polishing efficiency verified. Added clay substantially improved sedimentation stability of the slurry, decreasing its sedimentation rate to a quarter of its original value (1.8 to 0.45 mg s-1) while otherwise maintaining its good abrasive properties. The magnetisation curve measurement proved that designed slurry is soft magnetic material with no hysteresis, and its further suitability for MR polishing was confirmed by its magnetorheology namely in the quadratically increased yield stress due to the effect of applied magnetic field (0 to 600 kA m-1). The efficiency of the MR polishing process was tested on the flat samples of injection-moulded polyamide and verified by surface roughness/3D texture measurement. The resulting new composition of the MR polishing slurry exhibits a long-term stable system with a wide application window in the MR polishing process.

Zobrazit více v PubMed

Xia Z.B., Fang F.Z., Ahearne E., Tao M.R. Advances in polishing of optical freeform surfaces: A review. J. Mater. Proc. Technol. 2020;286:116828. doi: 10.1016/j.jmatprotec.2020.116828. DOI

Bica I., Liu Y.D., Choi H.J. Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 2013;19:394–406. doi: 10.1016/j.jiec.2012.10.008. DOI

Ronzova A., Sedlacik M., Cvek M. Magnetorheological fluids based on core-shell carbonyl iron particles modified by various organosilanes: Synthesis, stability and performance. Soft Matter. 2021;17:1299–1306. doi: 10.1039/D0SM01785J. PubMed DOI

de Vicente J., Klingenberg D.J., Hidalgo-Alvarez R. Magnetorheological fluids: A review. Soft Matter. 2011;7:3701–3710. doi: 10.1039/c0sm01221a. DOI

Miao C.L., Shen R., Wang M.M., Shafrir S.N., Yang H., Jacobs S.D. Rheology of Aqueous Magnetorheological Fluid Using Dual Oxide-Coated Carbonyl Iron Particles. J. Am. Ceram. Soc. 2011;94:2386–2392.

Souza A.M., da Silva E.J., Ratay J., Yamaguchi H. Magnetic field-assisted finishing processes: From bibliometric analysis to future trends. J. Braz. Soc. Mech. Sci. Eng. 2022;44:327. doi: 10.1007/s40430-022-03641-5. DOI

Xie S.W., Sun Q.Q., Ying G.Y., Guo L.X., Huang Q., Peng Q.Y., Xu J.F. Ultra-precise surface processing of LYSO scintillator crystals for Positron Emission Tomography. Appl. Surf. Sci. 2019;469:573–581. doi: 10.1016/j.apsusc.2018.11.024. PubMed DOI PMC

Qian C., Tian Y.B., Fan Z.H., Sun Z.G., Ma Z. Investigation on rheological characteristics of magnetorheological shear thickening fluids mixed with micro CBN abrasive particles. Smart Mater. Struct. 2022;31:095004. doi: 10.1088/1361-665X/ac7bbd. DOI

Guo H.R., Wu Y.B. Ultrafine polishing of optical polymer with zirconia-coated carbonyl-iron-particle-based magnetic compound fluid slurry. Int. J. Adv. Manuf. Technol. 2016;85:253–261. doi: 10.1007/s00170-015-7929-x. DOI

Chen Z.J., Pan J.S., Yan Q.S., Huang Z.L., Zhang F.L., Chen S.M. Study on the rheological and polishing properties of electromagnetic two-phase composite particles with abrasive characteristics. Smart Mater. Struct. 2022;31:045012. doi: 10.1088/1361-665X/ac5478. DOI

Ashtiani M., Hashemabadi S.H., Ghaffari A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 2015;374:716–730. doi: 10.1016/j.jmmm.2014.09.020. DOI

Cheng H.B., Zuo L., Song J.H., Zhang Q.J., Wereley N.M. Magnetorheology and sedimentation behavior of an aqueous suspension of surface modified carbonyl iron particles. J. Appl. Phys. 2010;107:3. doi: 10.1063/1.3358613. DOI

Lee J.W., Hong K.P., Kwon S.H., Choi H.J., Cho M.W. Suspension Rheology and Magnetorheological Finishing Characteristics of Biopolymer-Coated Carbonyliron Particles. Ind. Eng. Chem. Res. 2017;56:2416–2424. doi: 10.1021/acs.iecr.6b03790. DOI

Ubaidillah, Sutrisno J., Purwanto A., Mazlan S.A. Recent Progress on Magnetorheological Solids: Materials, Fabrication, Testing, and Applications. Adv. Eng. Mater. 2015;17:563–597. doi: 10.1002/adem.201400258. DOI

Liu J.B., Li X.Y., Zhang Y.F., Tian D., Ye M.H., Wang C. Predicting the Material Removal Rate (MRR) in surface Magnetorheological Finishing (MRF) based on the synergistic effect of pressure and shear stress. Appl. Surf. Sci. 2020;504:144492. doi: 10.1016/j.apsusc.2019.144492. DOI

Kumari C., Chak S.K. A review on magnetically assisted abrasive finishing and their critical process parameters. Manuf. Rev. 2018;5:13. doi: 10.1051/mfreview/2018010. DOI

Bedi T.S., Singh A.K. Magnetorheological methods for nanofinishing—A review. Part. Sci. Technol. 2016;34:412–422. doi: 10.1080/02726351.2015.1081657. DOI

Kumari C., Chak S.K. Study on influential parameters of hybrid AFM processes: A review. Manuf. Rev. 2019;6:23. doi: 10.1051/mfreview/2019022. DOI

Plachy T., Kutalkova E., Sedlacik M., Vesel A., Masar M., Kuritka I. Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J. Ind. Eng. Chem. 2018;66:362–369. doi: 10.1016/j.jiec.2018.06.002. DOI

Choi H.J., Zhang W.L., Kim S., Seo Y. Core-Shell Structured Electro- and Magneto-Responsive Materials: Fabrication and Characteristics. Materials. 2014;7:7460–7471. doi: 10.3390/ma7117460. PubMed DOI PMC

Kim H.M., Kang S.H., Choi H.J. Polyaniline coated ZnFe2O4 microsphere and its electrorheological and magnetorheological response. Coll. Surf. A Physicochem. Eng. Asp. 2021;626:127079. doi: 10.1016/j.colsurfa.2021.127079. DOI

Zhang P., Dong Y.Z., Choi H.J., Lee C.H. Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid. J. Ind. Eng. Chem. 2018;68:342–349. doi: 10.1016/j.jiec.2018.08.005. DOI

Park B.J., Hong M.K., Choi H.J. Atom transfer radical polymerized PMMA/magnetite nanocomposites and their magnetorheology. Coll. Polym. Sci. 2009;287:501–504. doi: 10.1007/s00396-009-2013-4. DOI

Jamari S.K.M., Nordin N.A., Ubaidillah, Aziz S.A.A., Nazmi N., Mazlan S.A. Systematic Review on the Effects, Roles and Methods of Magnetic Particle Coatings in Magnetorheological Materials. Materials. 2020;13:5317. doi: 10.3390/ma13235317. PubMed DOI PMC

Hajalilou A., Abouzari-Lotf E., Abbasi-Chianeh V., Shojaei T.R., Rezaie E. Inclusion of octahedron-shaped ZnFe2O4 nanoparticles in combination with carbon dots into carbonyl iron based magnetorheological suspension as additive. J. Alloys Compd. 2018;737:536–548. doi: 10.1016/j.jallcom.2017.12.071. DOI

Xu J.H., Li J.Y., Cao J.G. Effects of fumed silica weight fraction on rheological properties of magnetorheological polishing fluids. Coll. Polym. Sci. 2018;296:1145–1156. doi: 10.1007/s00396-018-4332-9. DOI

Bai Y., Xue D.L., Zhang X.J. Polishing performance of magnetorheological finishing with flocculated and deflocculated aqueous polishing fluid. Opt. Eng. 2019;58:025104.

Kutalkova E., Plachy T., Sedlacik M. On the enhanced sedimentation stability and electrorheological performance of intelligent fluids based on sepiolite particles. J. Mol. Liquids. 2020;309:113120. doi: 10.1016/j.molliq.2020.113120. DOI

Marins J.A., Plachy T., Kuzhir P. Iron-sepiolite magnetorheological fluids with improved performances. J. Rheol. 2019;63:125–139.

Lopez-Lopez M.T., Kuzhir P., Lacis S., Bossis G., Gonzalez-Caballero F., Duran J.D.G. Magnetorheology for suspensions of solid particles dispersed in ferrofluids. J. Phys. Condens. Matter. 2006;18:S2803–S2813. doi: 10.1088/0953-8984/18/38/S18. DOI

Cho M.S., Choi H.J., Jhon M.S. Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer. 2005;46:11484–11488. doi: 10.1016/j.polymer.2005.10.029. DOI

Ginder J.M., Davis L.C., Elie L.D. Rheology of magnetorheological fluids: Models and measurements. Int. J. Mod. Phys. B. 1996;10:3293–3303. doi: 10.1142/S0217979296001744. DOI

Roupec J., Berka P., Mazurek I., Strecker Z., Kubik M., Machacek O., Andani M.T. A novel method for measurement of MR fluid sedimentation and its experimental verification. Smart Mater. Struct. 2017;26:13. doi: 10.1088/1361-665X/aa83f2. DOI

Cvek M., Mrlik M., Moucka R., Sedlacik M. A systematical study of the overall influence of carbon allotrope additives on performance, stability and redispersibility of magnetorheological fluids. Coll. Surf. A Physicochem. Eng. Asp. 2018;543:83–92. doi: 10.1016/j.colsurfa.2018.01.046. DOI

Zhuang G.Z., Zhang Z.P., Yang H., Tang J.J. Structures and rheological properties of organo-sepiolite in oil-based drilling fluids. Appl. Clay Sci. 2018;154:43–51.

Hong K.P., Song K.H., Cho M.W., Kwon S.H., Choi H.J. Magnetorheological properties and polishing characteristics of silica-coated carbonyl iron magnetorheological fluid. J. Intell. Mater. Syst. Struct. 2018;29:137–146. doi: 10.1177/1045389X17730912. DOI

Sedlacik M., Pavlinek V. A tensiometric study of magnetorheological suspensions’ stability. Rsc. Adv. 2014;4:58377–58385. doi: 10.1039/C4RA11842A. DOI

Milde R., Bilek O., Sedlacik M., Kovarik M. Construction of magnetorheological device for finishing of non-metallic materials. In: Behulova M., Kozisek Z., Potucek Z., editors. Development of Materials Science in Research and Education. Volume 726 IOP Publishing Ltd.; Bristol, UK: 2020.

Guo C., Liu J., Li X.H., Yang S.Q. Effect of cavitation bubble on the dispersion of magnetorheological polishing fluid under ultrasonic preparation. Ultrason. Sonochem. 2021;79:105782. doi: 10.1016/j.ultsonch.2021.105782. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace