Synthesis and Anticancer and Antiviral Activities of C-2'-Branched Arabinonucleosides

. 2022 Oct 19 ; 23 (20) : . [epub] 20221019

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36293420

Grantová podpora
K 132870 National Research, Development and Innovation Office of Hungary
GINOP-2.3.4-15-2020-00008 and GINOP-2.3.3-15-2016-00021 European Union and the European Regional Development Fund

d-Arabinofuranosyl-pyrimidine and -purine nucleoside analogues containing alkylthio-, acetylthio- or 1-thiosugar substituents at the C2' position were prepared from the corresponding 3',5'-O-silylene acetal-protected nucleoside 2'-exomethylenes by photoinitiated, radical-mediated hydrothiolation reactions. Although the stereochemical outcome of the hydrothiolation depended on the structure of both the thiol and the furanoside aglycone, in general, high d-arabino selectivity was obtained. The cytotoxic effect of the arabinonucleosides was studied on tumorous SCC (mouse squamous cell) and immortalized control HaCaT (human keratinocyte) cell lines by MTT assay. Three pyrimidine nucleosides containing C2'-butylsulfanylmethyl or -acetylthiomethyl groups showed promising cytotoxicity at low micromolar concentrations with good selectivity towards tumor cells. SAR analysis using a methyl β-d-arabinofuranoside reference compound showed that the silyl-protecting group, the nucleobase and the corresponding C2' substituent are crucial for the cell growth inhibitory activity. The effects of the three most active nucleoside analogues on parameters indicative of cytotoxicity, such as cell size, division time and cell generation time, were investigated by near-infrared live cell imaging, which showed that the 2'-acetylthiomethyluridine derivative induced the most significant functional and morphological changes. Some nucleoside analogues also exerted anti-SARS-CoV-2 and/or anti-HCoV-229E activity with low micromolar EC50 values; however, the antiviral activity was always accompanied by significant cytotoxicity.

Zobrazit více v PubMed

Jordheim L.P., Durantel D., Zoulim F., Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013;12:447–464. doi: 10.1038/nrd4010. PubMed DOI

Shelton J., Lu X., Hollenbaugh J.A., Cho J.H., Amblard F., Schinazi R.F. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogues. Chem. Rev. 2016;116:14379–14455. doi: 10.1021/acs.chemrev.6b00209. PubMed DOI PMC

Pastor-Anglada M., Felipe A., Casado F.J. Transport and mode of action of nucleoside derivatives used in chemical and antiviral therapies. Trends Pharmacol. Sci. 1998;19:424–430. doi: 10.1016/S0165-6147(98)01253-X. PubMed DOI

Thornton P.J., Kadri H., Miccoli A., Mehellou Y. Nucleoside phosphate and phosphonate prodrug clinical candidates. J. Med. Chem. 2016;59:10400–10410. doi: 10.1021/acs.jmedchem.6b00523. PubMed DOI

Eyer L., Nencka R., de Clercq E., Seley-Radtke K.L., Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir. Chem. Chemother. 2018;26:2040206618761299. doi: 10.1177/2040206618761299. PubMed DOI PMC

Seley-Radtke K.L., Yates M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part I: Early structural modifications to the nucleoside scaffold. Antivir. Res. 2018;154:66–86. doi: 10.1016/j.antiviral.2018.04.004. PubMed DOI PMC

Yates M.K., Seley-Radtke K.L. The evolution of aniviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antivir. Res. 2019;162:5–21. doi: 10.1016/j.antiviral.2018.11.016. PubMed DOI PMC

Larson R.A. Three New Drugs for Acute Lymphoblastic Leukemia: Nelarabine, Clofarabine, and Forodesine. Semin. Oncol. 2007;34:S13–S20. doi: 10.1053/j.seminoncol.2007.11.002. PubMed DOI

Jacobs A.D. Gemcitabine-Based Therapy in Pancreas Cancer. Gemcitabine-Docetaxel and Other Novel Combinations. Cancer. 2002;95:923–927. doi: 10.1002/cncr.10756. PubMed DOI

Gane E.J., Stedman C.A., Hyland R.H., Ding X., Svarovskaia E., Symonds W.T., Hindes R.G., Berrey M.M. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med. 2013;368:34–44. doi: 10.1056/NEJMoa1208953. PubMed DOI

Dondoni A., Marra A. Recent applications of thiol–ene coupling as a click process for glycoconjugation. Chem. Soc. Rev. 2012;41:573–586. doi: 10.1039/C1CS15157F. PubMed DOI

Lázár L., Csávás M., Herczeg M., Herczegh P., Borbás A. Synthesis of S-Linked Glycoconjugates and S-Dissacharides by Thiol-Ene Coupling Reaction of Enoses. Org. Lett. 2012;14:4650–4653. doi: 10.1021/ol302098u. PubMed DOI

Lázár L., Csávás M., Tóth M., Somsák L., Borbás A. Thio-click approach to the synthesis of stable glycomymetics. Chem. Pap. 2015;69:889–895. doi: 10.1515/chempap-2015-0085. DOI

Bege M., Bereczki I., Herczeg M., Kicsák M., Eszenyi D., Herczegh P., Borbás A. A low-temperature photoinduced thiol-ene click reaction: A method for the synthesis of sugar modified nucleosides. Org. Biomol. Chem. 2017;15:9226–9233. doi: 10.1039/C7OB02184D. PubMed DOI

Bege M., Kiss A., Kicsák M., Bereczki I., Baksa V., Király G., Szemán-Nagy G., Szigeti M.Z., Herczegh P., Borbás A. Synthesis and cytostatic effect of 3’-deoxy-3’-C-sulfanylmethyl nucleoside derivatives with D-xylo configuration. Molecules. 2019;24:2173. doi: 10.3390/molecules24112173. PubMed DOI PMC

Bege M., Bereczki I., Molnár D.J., Kicsák M., Pénzes-Daku K., Bereczky Z., Ferenc G.Y., Kovács L., Herczegh P., Borbás A. Synthesis and oligomerization of cysteinyl nucleosides. Org. Biomol. Chem. 2020;18:8161–8178. doi: 10.1039/D0OB01890B. PubMed DOI

Borbás A. Photoinitiated Thiol-ene Reactions of Enoses: A Powerful Tool for Stereoselective Synthesis of Glycomimetics with Challenging Glycosidic Linkages. Chem. Eur. J. 2020;26:6090–6101. doi: 10.1002/chem.201905408. PubMed DOI PMC

Kiss A., Baksa V., Bege M., Tálas L., Borbás A., Bereczki I., Bánfalvi G., Szemán-Nagy G. MTT test and time-lapse microscopy to evaluate the antitumor potential of nucleoside analogues. Anticancer Res. 2021;41:137–149. doi: 10.21873/anticanres.14759. PubMed DOI

Hodek J., Veselovská L., Sýkorová V., Cízék K., Pohl R., Eyer L., Svoboda P., Ruzek D., Weber J., Nencka R., et al. Antiviral Activity of 7-Substituted 7-Deazapurine Ribonucleosides, Monophosphate Prodrugs, and Triphoshates against Emerging RNA Viruses. ACS Infect. Dis. 2021;7:471–478. PubMed

Painter W.P., Holman W., Bush J.A., Almazedi F., Malik H., Eraut N.C.J.E., Morin M.J., Szewczyk L.J., Painter G.R. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob. Agents Chemother. 2021;65:e02428-20. doi: 10.1128/AAC.02428-20. PubMed DOI PMC

Vangeel L., Chiu W., De Jonghe S., Maes P., Slechten B., Raymenants J., André E., Leyssen P., Neyts J., Jochmans D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antivir. Res. 2022;198:105252. doi: 10.1016/j.antiviral.2022.105252. PubMed DOI PMC

Gauthier F., Malher A., Vasseur J.-J., Dupouy C., Debart F. Conjugation of Small Molecules to RNA Using a Reducible Disulfide Linker Attached at the 2′-OH Position through a Carbamate Function. Eur. J. Org. Chem. 2019;2019:5636–5645. doi: 10.1002/ejoc.201900740. DOI

Masaki Y., Yamamoto K., Inde T., Yoshida K., Maruyama A., Nagata T., Tanihata J., Takeda S., Sekine M., Seioa K. Synthesis of 2′-O-(N-methylcarbamoylethyl) 5-methyl-2-thiouridine and its application to splice-switching oligonucleotides. Bioorg. Med. Chem. Lett. 2019;29:160–163. doi: 10.1016/j.bmcl.2018.12.005. PubMed DOI

Lin T.-S., Luo M.-Z., Liu M.-C., Clarke-Katzenburg R.H., Cheng Y.-C., Prusoff W.H., Mancini W.R., Birnbaum G.I., Gabe E.J., Giziewicz J. Synthesis and Anticancer and Antiviral Activities of Various 2′- and 3′-Methylidene-Substituted Nucleoside Analogues and Crystal Structure of 2′-Deoxy-2′-methylidenecytidine Hydrochloride. J. Med. Chem. 1991;34:2607–2615. doi: 10.1021/jm00112a040. PubMed DOI

Reist E.J., Benitez A., Goodman L. The Synthesis of Some S’-Thiopentofuranosylpyrimidines. J. Chem. Soc. 1964;29:554–558. doi: 10.1021/jo01026a008. DOI

Dénès F., Pichowicz M., Povie G., Renaud P. Thiyl radicals in organic synthesis. Chem. Rev. 2014;114:2587–2693. doi: 10.1021/cr400441m. PubMed DOI

Buchini S., Leumann C.J. New Nucleoside Analogues for the Recognition of Pyrimidine-Purine Inversion Sites. Nucl. Nucl. Nucleic Acids. 2003;22:1199–1201. doi: 10.1081/NCN-120022835. PubMed DOI

Bockman M.R., Kalinda A.S., Petrelli R., De la Mora-Rey T., Tiwari D., Liu F., Dawadi S., Nandakumar M., Rhee K.Y., Schnappinger D., et al. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors. J. Med. Chem. 2015;58:7349–7369. doi: 10.1021/acs.jmedchem.5b00719. PubMed DOI PMC

Kelemen V., Bege M., Eszenyi D., Debreczeni N., Bényei A., Stürzer T., Herczegh P., Borbás A. Stereoselective Thioconjugation by Photoinduced Thiol-ene Coupling Reactions of Hexo-and Pentopyranosyl D-and L-Glycals at Low-Temperature—Reactivity and Stereoselectivity Study. Chem. Eur. J. 2019;25:14477. doi: 10.1002/chem.201903859. PubMed DOI PMC

Le S.T., Páll D., Rőth E., Tran T., Debreczeni N., Bege M., Bereczki I., Ostorházi E., Milánkovits M., Herczegh P., et al. The very first modification of pleuromutilin and lefamulin by photoinitiated radical addition reactions—Synthesis and antibacterial studies. Pharmaceutics. 2021;13:2028. doi: 10.3390/pharmaceutics13122028. PubMed DOI PMC

McCourt R.O., Scanlan E.M. A sequential acyl thiol–ene and thiolactonization approach for the synthesis of δ-thiolactones. Org. Lett. 2019;21:3460–3464. doi: 10.1021/acs.orglett.9b01271. PubMed DOI

Szilágyi Á., Fenyvesi F., Majercsik O., Pelyvás I.F., Bácskay I., Fehér P., Váradi J., Vecsernyés M., Herczegh P. Synthesis and Cytotoxicity of Leinamycin Antibiotic Analogues. J. Med. Chem. 2006;49:5626–5630. doi: 10.1021/jm060471h. PubMed DOI

Peterson M.A., Oliveira M., Christiansen M.A., Cutler C.E. Preliminary SAR analysis of novel antiproliferative N6,5’-bis-ureidoadenosine derivatives. Bioorg. Med. Chem. Lett. 2009;19:6775–6779. doi: 10.1016/j.bmcl.2009.09.083. PubMed DOI

Shelton J.R., Cutler C.E., Browning M.S., Balzarini J., Peterson M.A. Synthesis and SAR of 2’,3’-bis-O-substituted N6,5’-bis-ureidoadenosine derivatives: Implications for prodrug delivery and mechanism of action. Bioorg. Med. Chem. Lett. 2012;22:6067–6071. doi: 10.1016/j.bmcl.2012.08.050. PubMed DOI

Chamorro C., Pérez-Pérez M.J., Rodríguez-Barrios F., Gago F., De Clercq E., Balzarini J., San-Félix A., Camarasa M.J. Exploring the role of the 5’-position of TSAO-T. Synthesis and anti-HIV evaluation of novel TSAO-T derivatives. Antivir. Res. 2001;50:207–222. doi: 10.1016/S0166-3542(01)00145-0. PubMed DOI

Harmse L., Dahan-Farkas N., Panayides J.L., van Otterlo W., Penny C. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues. PLoS ONE. 2015;10:e0138607. doi: 10.1371/journal.pone.0138607. PubMed DOI PMC

Panayides J.L., Mathieu V., Banuls L.M.Y., Apostolellis H., Dahan-Farkas N., Davids de Leonie Harmse H., Rey M.E.C., Green I.R., Pelly S.C., Kiss R., et al. Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides. Bioorg. Med. Chem. 2016;24:2716–2724. doi: 10.1016/j.bmc.2016.04.036. PubMed DOI

Zhong M., Strobel S.A.A. Synthesis of isotopically labeled P-site substrates for the ribosomal peptidyl transferase reaction. J. Org. Chem. 2008;73:603–611. doi: 10.1021/jo702070m. PubMed DOI PMC

Boukamp P., Petrussevska R.T., Breitkreutz D., Hornung J., Markham A., Fusenig N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC

Boukamp P., Popp S., Altmeyer S., Hülsen A., Fasching C., Cremer T., Fusenig N.E. Sustained nontumorigenic phenotype correlates with a largely stable chromosome content during long-term culture of the human keratinocyte line HaCaT. Genes Chromosom. Cancer. 1997;19:201–214. doi: 10.1002/(SICI)1098-2264(199708)19:4<201::AID-GCC1>3.0.CO;2-0. PubMed DOI

Sominski D.D., Rafferty P., Brosnan K., Volk A., Walker M., Capaldi D., Emmell E., Johnson K., Weinstock D. Development of a squamous cell carcinoma mouse model for immunotoxicity testing. J. Immunotoxicol. 2016;13:226–234. doi: 10.3109/1547691X.2015.1045105. PubMed DOI

Nagy G., Király G., Veres P., Lázár I., Fábián I., Bánfalvi G., Juhász I., Kalmár J. Controlled release of methotrexate from functionalized silica-gelatin aerogel microparticles applied against tumour cell growth. Int. J. Pharm. 2019;558:396–403. doi: 10.1016/j.ijpharm.2019.01.024. PubMed DOI

Hartinger J., Vesely P., Netíková I., Matousková E., Petruzelka L. The protective effect of pyrimidine nucleosides on human HaCaT keratinocytes treated with 5-FU. Anticancer Res. 2015;35:1303–1310. PubMed

Nagy Z., Nagy M., Kiss A., Rácz D., Barna B., Könczöl P., Bankó C., Bacsó Z., Kéki S., Bánfalvi G., et al. MICAN, a new fluorophore for vital and non-vital staining of human cells. Toxicol. In Vitro. 2018;48:137–145. doi: 10.1016/j.tiv.2018.01.012. PubMed DOI

Nagy G., Hennig G.W., Petrenyi K., Kovacs L., Pocsi I., Dombradi V., Bánfalvi G. Time-lapse video microscopy and image analysis of adherence and growth patterns of Candida albicans strains. Appl. Microbiol. Biotechnol. 2014;98:5185–5194. doi: 10.1007/s00253-014-5696-5. PubMed DOI

Farkas E., Ujvarosi K., Nagy G., Posta J., Bánfalvi G. Apoptogenic and necrogenic effects of mercuric acetate on the chromatin structure of K562 human erythroleukemia cells. Toxicol. In Vitro. 2010;24:267–275. doi: 10.1016/j.tiv.2009.08.021. PubMed DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...