Comparative Analysis between Individual, Centralized, and Federated Learning for Smartwatch Based Stress Detection

. 2022 Sep 26 ; 12 (10) : . [epub] 20220926

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36294724

Machine learning has been proven to provide good performances on stress detection tasks using multi-modal sensor data from a smartwatch. Generally, machine learning techniques need a sufficient amount of data to train a robust model. Thus, we need to collect data from several users and send them to a central server to feed the algorithm. However, the uploaded data may contain sensitive information that can jeopardize the user's privacy. Federated learning can tackle this challenge by enabling the model to be trained using data from all users without the user's data leaving the user's device. In this study, we implement federated learning-based stress detection and provide a comparative analysis between individual, centralized, and federated learning. The experiment was conducted on WESAD dataset by using Logistic Regression as the classifier. The experiment results show that in terms of accuracy, federated learning cannot reach the performance level of both individual and centralized learning. The individual learning strategy performs best with an average accuracy of 0.9998 and an average F1-measure of 0.9996.

Zobrazit více v PubMed

Lazarus R.S., Folkman S. Stress, Appraisal, and Coping. Springer Publishing Company; New York, NY, USA: 1984.

Wakeling A. Stress and Anxiety at Work: Personal or Cultural? ACAS; London, UK: 2019.

Marine A., Ruotsalainen J.H., Serra C., Verbeek J.H. Preventing occupational stress in healthcare workers. Cochrane Database Syst. Rev. 2006;4:1–31. PubMed

Weinberg A., Creed F. Stress and psychiatric disorder in healthcare professionals and hospital staff. Lancet. 2000;355:533–537. doi: 10.1016/S0140-6736(99)07366-3. PubMed DOI

Aasland O.G., Olff M., Falkum E., Schweder T., Ursin H. Health complaints and job stress in Norwegian physicians: The use of an overlapping questionnaire design. Soc. Sci. Med. 1997;45:1615–1629. doi: 10.1016/S0277-9536(97)00093-2. PubMed DOI

Pickering T.G. Mental stress as a causal factor in the development of hypertension and cardiovascular disease. Curr. Hypertens. Rep. 2001;3:249–254. doi: 10.1007/s11906-001-0047-1. PubMed DOI

Wang Y., Chen R., Zhang L. Reliability and validity of generalized anxiety scale-7 in inpatients in Chinese general hospital. J. Clin. Psychiatr. 2018;28:168–171.

Welp A., Meier L.L., Manser T. Emotional exhaustion and workload predict clinician-rated and objective patient safety. Front. Psychol. 2015;5:1573. doi: 10.3389/fpsyg.2014.01573. PubMed DOI PMC

Tsiga E., Panagopoulou E., Montgomery A. Examining the link between burnout and medical error: A checklist approach. Burn. Res. 2017;6:1–8. doi: 10.1016/j.burn.2017.02.002. DOI

Fauzi M.A., Yeng P., Yang B., Rachmayani D. Examining the Link Between Stress Level and Cybersecurity Practices of Hospital Staff in Indonesia; Proceedings of the The 16th International Conference on Availability, Reliability and Security; Vienna, Austria. 17–20 August 2021; pp. 1–8.

Wemm S.E., Wulfert E. Effects of acute stress on decision making. Appl. Psychophysiol. Biofeedback. 2017;42:1–12. doi: 10.1007/s10484-016-9347-8. PubMed DOI PMC

Liao W., Zhang W., Zhu Z., Ji Q. A real-time human stress monitoring system using dynamic Bayesian network; Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-workshops; San Diego, CA, USA. 21–23 September 2005; p. 70.

Cohen S., Kamarck T., Mermelstein R. Perceived stress scale (PSS) J. Health Soc. Behav. 1983;24:285. PubMed

Levenstein S., Prantera C., Varvo V., Scribano M.L., Berto E., Luzi C., Andreoli A. Development of the Perceived Stress Questionnaire: A new tool for psychosomatic research. J. Psychosom. Res. 1993;37:19–32. doi: 10.1016/0022-3999(93)90120-5. PubMed DOI

Spagnolli A., Guardigli E., Orso V., Varotto A., Gamberini L. International Workshop on Symbiotic Interaction. Springer; Berlin/Heidelberg, Germany: 2015. Measuring user acceptance of wearable symbiotic devices: Validation study across application scenarios; pp. 87–98.

Lazaro M.J.S., Lim J., Kim S.H., Yun M.H. International Conference on Human-Computer Interaction. Springer; Berlin/Heidelberg, Germany: 2020. Wearable technologies: Acceptance model for smartwatch adoption among older adults; pp. 303–315.

Schmidt P., Reiss A., Duerichen R., Marberger C., Van Laerhoven K. Introducing wesad, a multimodal dataset for wearable stress and affect detection; Proceedings of the 20th ACM international conference on multimodal interaction; Boulder, CO, USA. 16–20 October 2018; pp. 400–408.

Garg P., Santhosh J., Dengel A., Ishimaru S. Stress Detection by Machine Learning and Wearable Sensors; Proceedings of the 26th International Conference on Intelligent User Interfaces; College Station, TX, USA. 14–17 April 2021; pp. 43–45.

Indikawati F.I., Winiarti S. Stress detection from multimodal wearable sensor data; Proceedings of the IOP Conference Series: Materials Science and Engineering; Yogyakarta, Indonesia. 16 November 2019; Bristol, UK: IOP Publishing; 2020. p. 012028.

Siirtola P. Continuous stress detection using the sensors of commercial smartwatch; Proceedings of the Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers; London, UK. 9–13 September 2019; pp. 1198–1201.

Kirschbaum C., Pirke K.M., Hellhammer D.H. The ‘Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology. 1993;28:76–81. doi: 10.1159/000119004. PubMed DOI

Kreibig S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010;84:394–421. doi: 10.1016/j.biopsycho.2010.03.010. PubMed DOI

Zhang Y., Haghdan M., Xu K.S. Unsupervised motion artifact detection in wrist-measured electrodermal activity data; Proceedings of the 2017 ACM International Symposium on Wearable Computers; Maui, HI, USA. 11–15 September 2017; pp. 54–57.

Harris C.R., Millman K.J., Van Der Walt S.J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N.J., et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC

Fauzi M.A., Yang B. pHealth 2021. IOS Press; Amsterdam, The Netherlands: 2021. Continuous Stress Detection of Hospital Staff Using Smartwatch Sensors and Classifier Ensemble; pp. 245–250. PubMed

Kurniawan H., Maslov A.V., Pechenizkiy M. Stress detection from speech and galvanic skin response signals; Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems; Porto, Portugal. 20–22 June 2013; pp. 209–214.

Zubair M., Yoon C., Kim H., Kim J., Kim J. Smart wearable band for stress detection; Proceedings of the 2015 5th International Conference on IT Convergence and Security (ICITCS); Kuala Lumpur, Malaysia. 24–27 August 2015; pp. 1–4.

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.

Beutel D.J., Topal T., Mathur A., Qiu X., Parcollet T., de Gusmão P.P., Lane N.D. Flower: A friendly federated learning research framework. arXiv. 20202007.14390

McMahan B., Moore E., Ramage D., Hampson S., y Arcas B.A. Artificial Intelligence and Statistics. PMLR; New York, NY, USA: 2017. Communication-efficient learning of deep networks from decentralized data; pp. 1273–1282.

Domingo-Ferrer J., Blanco-Justicia A. The Ethics of Cybersecurity. Springer; Cham, Switzerland: 2020. Privacy-preserving technologies; pp. 279–297.

Rieke N., Hancox J., Li W., Milletari F., Roth H.R., Albarqouni S., Bakas S., Galtier M.N., Landman B.A., Maier-Hein K., et al. The future of digital health with federated learning. NPJ Digit. Med. 2020;3:1–7. doi: 10.1038/s41746-020-00323-1. PubMed DOI PMC

Ahmed S.T., Kumar V.V., Singh K.K., Singh A., Muthukumaran V., Gupta D. 6G enabled federated learning for secure IoMT resource recommendation and propagation analysis. Comput. Electr. Eng. 2022;102:108210. doi: 10.1016/j.compeleceng.2022.108210. DOI

Li W., Milletarì F., Xu D., Rieke N., Hancox J., Zhu W., Baust M., Cheng Y., Ourselin S., Cardoso M.J., et al. International Workshop on Machine Learning in Medical Imaging. Springer; Berlin/Heidelberg, Germany: 2019. Privacy-preserving federated brain tumour segmentation; pp. 133–141.

Jacoby R., Greenfeld Barsky K., Porat T., Harel S., Hanalis Miller T., Goldzweig G. Individual stress response patterns: Preliminary findings and possible implications. PLoS ONE. 2021;16:e0255889. doi: 10.1371/journal.pone.0255889. PubMed DOI PMC

Surden H. Machine learning and law. Wash. L. Rev. 2014;89:87.

Liu J.C., Goetz J., Sen S., Tewari A. Learning from others without sacrificing privacy: Simulation comparing centralized and federated machine learning on mobile health data. JMIR MHealth UHealth. 2021;9:e23728. doi: 10.2196/23728. PubMed DOI PMC

Nilsson A., Smith S., Ulm G., Gustavsson E., Jirstrand M. A performance evaluation of federated learning algorithms; Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning; Rennes, France. 10 December 2018; pp. 1–8.

Sozinov K., Vlassov V., Girdzijauskas S. Human activity recognition using federated learning; Proceedings of the 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom); Melbourne, VIC, Australia. 11–13 December 2018; pp. 1103–1111.

De Maeyer C., Markopoulos P. Are Digital Twins Becoming Our Personal (Predictive) Advisors?: ‘Our Digital Mirror of Who We Were, Who We Are and Who We Will Become’; Proceedings of the 22nd International Conference on Human-Computer Interaction’20: HCI International 2020; Copenhagen, Denmark. 19–24 July 2020; Berlin/Heidelberg, Germany: Springer; 2020. pp. 250–268.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...