Dissolution Kinetics of Meloxicam Formulations Co-Milled with Sodium Lauryl Sulfate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-SVV/2021
Ministry of Education Youth and Sports
PubMed
36297608
PubMed Central
PMC9610000
DOI
10.3390/pharmaceutics14102173
PII: pharmaceutics14102173
Knihovny.cz E-zdroje
- Klíčová slova
- co-milling, dissolution kinetics, dissolution rate, enhanced dissolution, meloxicam, sodium lauryl sulfate, surface modification,
- Publikační typ
- časopisecké články MeSH
Meloxicam (MLX) is a poorly soluble drug exhibiting strong hydrophobicity. This combination of properties makes dissolution enhancement by particle size reduction ineffective; therefore, combined formulation approaches are required. Various approaches were investigated in this study, including milling, solid dispersions, and self-emulsified lipid formulations. Whereas milling studies of MLX and its co-milling with various polymers have been reported in recent literature, this study is focused on investigating the dissolution kinetics of particulate formulations obtained by co-milling MLX with sodium lauryl sulfate (SLS) in a planetary ball mill with 5-25 wt.% SLS content. The effects of milling time and milling ball size were also investigated. No significant reduction in drug crystallinity was observed under the investigated milling conditions according to XRD data. For the dissolution study, we used an open-loop USP4 dissolution apparatus, and recorded dissolution profiles were fitted according to the Weibull model. The Weibull parameters and a novel criterion-surface utilization factor-were used to evaluate and discuss the drug release from the perspective of drug particle surface changes throughout the dissolution process. The most effective co-milling results were achieved using smaller balls (2 mm), with a co-milling time of up to 15 min SLS content of up to 15 wt.% to increase the dissolution rate by approximately 100 times relative to the physical mixture reference. The results suggest that for hydrophobic drugs, particle performance during dissolution is very sensitive to surface properties and not only to particle size. Co-milling with SLS prepares the surface for faster drug release than that achieved with direct mixing.
Zobrazit více v PubMed
Boldyrev V.V. Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 2006;75:177–189. doi: 10.1070/RC2006v075n03ABEH001205. DOI
Khadka P., Roa J., Kim H., Kim I., Kim J.T., Kim H., Cho J.M., Yun G., Lee J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 2014;9:304–316. doi: 10.1016/j.ajps.2014.05.005. DOI
Chu K.R., Lee E., Jeong S.H., Park E.S. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Arch. Pharm. Res. 2012;35:1187–1195. doi: 10.1007/s12272-012-0709-3. PubMed DOI
Loh Z.H., Samanta A.K., Heng P.W.S. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J. Pharm. Sci. 2015;10:255–274. doi: 10.1016/j.ajps.2014.12.006. DOI
Szafraniec J., Antosik A., Knapik-Kowalczuk J., Kurek M., Syrek K., Chmiel K., Paluch M., Jachowicz R. Planetary ball milling and supercritical fluid technology as a way to enhance dissolution of bicalutamide. Int. J. Pharm. 2017;533:470–479. doi: 10.1016/j.ijpharm.2017.03.078. PubMed DOI
Chaudhari S.P., Dugar R.P. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J. Drug Deliv. Sci. Technol. 2017;41:68–77. doi: 10.1016/j.jddst.2017.06.010. DOI
Slamova M., Prausova K., Epikaridisova J., Brokesova J., Kuentz M., Patera J., Zamostny P. Effect of co-milling on disso-lution rate of poorly soluble drugs. Int. J. Pharm. 2021;597:120312. doi: 10.1016/j.ijpharm.2021.120312. PubMed DOI
Yazdanian M., Briggs K., Jankovsky C., Hawi A. The “high solubility” definition of the current FDA Guidance on Bio-pharmaceutical Classification System may be too strict for acidic drugs. Pharm. Res. 2004;21:293–299. doi: 10.1023/B:PHAM.0000016242.48642.71. PubMed DOI
Sheth A.R., Lubach J.W., Munson E.J., Muller F.X., Grant D.J. Mechanochromism of piroxicam accompanied by intermo-lecular proton transfer probed by spectroscopic methods and solid-phase changes enhancer. J. Am. Chem. Soc. 2005;127:6641–6651. doi: 10.1021/ja045823t. PubMed DOI
Gupta M.K., Vanwert A., Bogner R.H. Formation of physically stable amorphous drugs by milling with Neusilin. J. Pharm. Sci. 2003;92:536–551. doi: 10.1002/jps.10308. PubMed DOI
Samprasit W., Akkaramongkolporn P., Ngawhirunpat T., Rojanarata T., Opanasopit P. Formulation and evaluation of meloxicam oral disintegrating tablet with dissolution enhanced by combination of cyclodextrin and ion exchange resins. Drug Dev. Ind. Pharm. 2015;41:1006–1016. doi: 10.3109/03639045.2014.922573. PubMed DOI
Kürti L., Kukovecz Á., Kozma G., Ambrus R., Deli M.A., Szabó-Révész P. Study of the parameters influencing the co-grinding process for the production of Meloxicam nanoparticles. Powder Technol. 2011;212:210–217. doi: 10.1016/j.powtec.2011.05.018. DOI
Agustin R., Oktavia L., Fitriani L., Zaini E. Preparation and characterization of co-grinding tablet of Meloxicam with PVP K-30. Pharm. Lett. 2016;8:166–169.
Zaini E., Witarsa A.S., Agustin R. Enhancement of dissolution rate of Meloxicam by co-grinding technique using Hydroxy-propyl methylcellulose. J. Chem. Pharm. Res. 2014;6:263–267.
Etman M., Shekedef M., Nada A., Ismail A. In vitro and In vivo Evaluation of Tablets Containing Meloxicam- PEG 6000 Ball-Milled Co-Ground Mixture. J. Appl. Pharm. 2017;7:31–39. doi: 10.7324/JAPS.2017.70306. DOI
Bartos C., Szabó-Révész P., Bartos C., Katona G., Jójárt-Laczkovich O., Ambrus R. The Effect of an optimized wet milling technology on the crystallinity, Morphology and Dissolution Properties of Micro- and Nanonized Meloxicam. Molecules. 2016;21:507. doi: 10.3390/molecules21040507. PubMed DOI PMC
Brokesova J., Slamova M., Zamostny P., Kuentz M., Koktan J., Krejcik L., Vranikova B., Svacinova P., Sklubalova Z. Mechanistic study of dissolution enhancement by interactive mixtures of chitosan with meloxicam as model. Eur. J. Pharm. Sci. 2022;169:106087. doi: 10.1016/j.ejps.2021.106087. PubMed DOI
Marinko N., Zamostny P. Meloxicam Carrier Systems Having Enhanced Release and Aqueous Wettability Prepared Using Micro-suspensions in Different Liquid Media. Aaps Pharmscitech. 2020;21:155. doi: 10.1208/s12249-020-01701-4. PubMed DOI
Dehghan M.H.G., Jafar M. Improving Dissolution of Meloxicam Using Solid Dispersions. Iranian J. Pharm. Res. 2006;4:231–238. doi: 10.22037/ijpr.2010.682. DOI
Aejaz A., Jafar M., Dehghan M.H.G., Adil Shareef S. Meloxicam-PVP-SLS ternary dispersion systems: In-vitro and in-vivo evaluation. Int. J. Pharm. Pharm. Sci. 2010;2:182–190.
Maggi L., Bruni G., Maietta M., Canobbio A., Cardini A., Conte U., II Technological approaches to improve the dissolution behavior of nateglinide, a lipophilic insoluble drug: Co-milling. Int. J. Pharm. 2013;454:568–572. doi: 10.1016/j.ijpharm.2013.06.085. PubMed DOI
Maggi L., Canobbio A., Bruni G., Musitelli G., Conte U. Improvement of the dissolution behavior of gliclazide, a slightly soluble drug, using solid dispersions. J. Drug Deliv. Sci. Technol. 2015;26:17–23. doi: 10.1016/j.jddst.2015.01.002. DOI
Dressman J., Krämer J. Pharmaceutical Dissolution Testing. Taylor & Francis Group, LLC; New York, NY, USA: 2005.
Ramteke K., Dighe P., Kharat A., Patil S. Mathematical Models of Drug Dissolution: A Review. Sch. Acad. J. Pharm. 2014;3:388–396.
Papadopoulou V., Kosmidis K., Vlachou M., Maderas P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006;309:44–50. doi: 10.1016/j.ijpharm.2005.10.044. PubMed DOI
Zamostny P., Belohlav Z. A software for regression analysis of kinetic data. Comput. Chem. 1999;23:479–485. doi: 10.1016/S0097-8485(99)00024-8. DOI
Van Eerdenbrugh B., Van den Mooter G., Augustijns P. Top-down production of drug nanocrystals: Nanosuspension stabi-lization, miniaturization and transformation into solid products. Int. J. Pharm. 2008;364:64–75. doi: 10.1016/j.ijpharm.2008.07.023. PubMed DOI
Saharan V.A., Kukkar V., Kataria M., Kharb V., Choudhury P.K. Ordered mixing: Mechanism, process and applications in pharmaceutical formulations. Asian J. Pharm. Sci. 2008;3:240–259.
Varghese S., Ghoroi C. Improving the wetting and dissolution of ibuprofen using solventless co-milling. Int. J. Pharm. 2017;533:145–155. doi: 10.1016/j.ijpharm.2017.09.062. PubMed DOI
Kale K., Hapgood K., Stewart P. Drug agglomeration and dissolution—What is the influence of powder mixing? Eur. J. Pharm. Biopharm. 2009;72:156–164. doi: 10.1016/j.ejpb.2008.12.015. PubMed DOI
Lachiver E.D., Abatzoglou N., Cartilier L., Simard J.S. Agglomeration tendency in dry pharmaceutical granular systems. Eur. J. Pharm. Biopharm. 2006;64:193–199. doi: 10.1016/j.ejpb.2006.04.005. PubMed DOI
Dokoumetzidis A., Papadopoulou V., Macheras P. Analysis of dissolution data using modified versions of Noyes-Whitney equation and the Weibull function. Pharm. Res. 2006;23:256–261. doi: 10.1007/s11095-006-9093-3. PubMed DOI