An extensive individual particle analysis of solid airborne particles collected in a moderately urbanized area
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2111/2020
University of Hradec Kralove
CZ.11.3.119/0.0/0.0/16_022/0001150
INTERREG VA
PubMed
36308657
DOI
10.1007/s11356-022-23862-4
PII: 10.1007/s11356-022-23862-4
Knihovny.cz E-zdroje
- Klíčová slova
- Air pollution, Elemental composition, Energy-dispersive X-ray spectroscopy, Morphology, Particulate matter, Scanning electron microscopy, Single particle analysis,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí metody MeSH
- pevné částice * analýza MeSH
- uhlík analýza MeSH
- velikost částic MeSH
- velkoměsta MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- velkoměsta MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice * MeSH
- uhlík MeSH
Detailed individual particle characterization of PM10, in terms of particle size, morphology, and elemental composition, was done using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. The samples were collected in four localities in the Czech Republic (Central Europe), three of which are medium-sized cities, and one is a natural locality in the mountains. More than 1600 particles obtained from each locality were evaluated. During the sampling period (1.9.-8.9.2019), the atmospheric conditions were similar in the localities, which enabled the identification of PM10 characteristics common to all the sampling sites. Some differences in the particles' morphology and composition, arising from site-specific conditions, were observed too. The most abundant elements in the PM10 were C, O, Si, Fe, Al, Ca, Na, K, Mg, and S, but some toxic elements (Cr, Cu, and Ni) were also detected. The main component of the PM10 is carbon, whose multimodal distribution indicates that the particles contain different carbonaceous chemical compounds. The distribution of carbon in the natural locality was different compared to the other sites, suggesting a specific character of the sources of carbonaceous compounds in this region. Last but not least, a relationship between Al, Si, and O concentrations was found, which implies the presence of aluminosilicates and silicon dioxide (possibly sand) of crustal origin in the particles.
Zobrazit více v PubMed
Alam K, Blaschke T, Madl P et al (2011) Aerosol size distribution and mass concentration measurements in various cities of Pakistan. J Environ Monit 13:1944. https://doi.org/10.1039/c1em10086f DOI
Avdakovic S, Dedovic MM, Dautbasic N, Dizdarevic J (2016) The influence of wind speed, humidity, temperature and air pressure on pollutants concentrations of PM10 — Sarajevo case study using wavelet coherence approach. In: 2016 XI International Symposium on Telecommunications (BIHTEL). IEEE, pp 1–6. https://doi.org/10.1109/BIHTEL.2016.7775719
Bahadar Zeb B, Khan Alam K, Armin Sorooshian A et al (2018) On the morphology and composition of particulate matter in an urban environment. Aerosol Air Qual Res 18:1431–1447. https://doi.org/10.4209/aaqr.2017.09.0340 DOI
Begum BA, Hossain A, Nahar N et al (2012) Organic and black carbon in PM2.5 at an urban site at Dhaka, Bangladesh. Aerosol Air Qual Res 12:1062–1072. https://doi.org/10.4209/aaqr.2012.05.0138 DOI
Boubel RW, Vallero D, Fox DL et al (1994) Fundamentals of air pollution, 3rd edn. Academic Press, San Diego
Bray C, Battye W, Uttamang P et al (2017) Characterization of particulate matter (PM2.5 and PM10) relating to a coal power plant in the boroughs of Springdale and Cheswick, PA. Atmosphere 8:186. https://doi.org/10.3390/atmos8100186 DOI
Crosbie E, Sorooshian A, Monfared N et al (2014) A multi-year aerosol characterization for the greater Tehran area using satellite, surface, and modeling data. Atmosphere 5:178–197. https://doi.org/10.3390/atmos5020178 DOI
Elmes M, Gasparon M (2017) Sampling and single particle analysis for the chemical characterisation of fine atmospheric particulates: a review. J Environ Manage 202:137–150. https://doi.org/10.1016/j.jenvman.2017.06.067 DOI
ENVEA (2021) Continuous, Automatic Suspended Particulate Monitor MP101M. https://www.envea.global/s/ambient-en/particulate-monitors-ambient-en/mp101m-pm10-pm2-5/ . Accessed 10 Dec 2021
Feng W, Li H, Wang S et al (2019) Short-term PM10 and emergency department admissions for selective cardiovascular and respiratory diseases in Beijing, China. Sci Total Environ 657:213–221. https://doi.org/10.1016/j.scitotenv.2018.12.066 DOI
Ferreira T, Rasband W (2012) ImageJ User Guide - IJ 1.46r. https://imagej.nih.gov/ij/docs/guide/user-guide.pdf . Accessed 12 Jan 2022
Genga A, Siciliano T, Siciliano M et al (2018) Individual particle SEM-EDS analysis of atmospheric aerosols in rural, urban, and industrial sites of Central Italy. Environ Monit Assess 190:456. https://doi.org/10.1007/s10661-018-6826-9 DOI
Giri D, Krishna VM, Adhikary PR (2008) The influence of meteorological conditions on PM10 concentrations in Kathmandu Valley. Int J Environ Res 2:49–60
Grigoratos T, Martini G (2015) Brake wear particle emissions: a review. Environ Sci Pollut Res 22:2491–2504. https://doi.org/10.1007/s11356-014-3696-8 DOI
Hameed S, Pan K, Su W, at, (2022) Label-free detection and quantification of ultrafine particulate matter in lung and heart of mouse and evaluation of tissue injury. Part Fibre Toxicol 19:51. https://doi.org/10.1186/s12989-022-00493-8 DOI
Hatori Y, Matsuyama S, Ishii K et al (2010) PIXE analysis of individual particles in coal fly ash. Int J PIXE 20:57–62. https://doi.org/10.1142/S0129083510001975 DOI
Juneja Gandhi T, Garg PR, Kurian K et al (2022) Outdoor physical activity in an air polluted environment and its effect on the cardiovascular system—a systematic review. Int J Environ Res Public Health 19:10547. https://doi.org/10.3390/ijerph191710547 DOI
Karar K, Gupta AK, Kumar A et al (2006) Statistical interpretation of weekday/weekend differences of ambient particulate matter, vehicular traffic and meteorological parameters in an urban region of Kolkata, India. Indoor Built Environ 15:235–245. https://doi.org/10.1177/1420326X06063877 DOI
Karşı MBB, Berberler E, Berberler T et al (2020) Correction and source apportionment of vehicle emission factors obtained from Bolu Mountain Highway Tunnel, Turkey. Atmos Pollut Res 11:2133–2141. https://doi.org/10.1016/j.apr.2020.06.021 DOI
Kayes I, Shahriar S, Hasan K et al (2019) The relationships between meteorological parameters and air pollutants in an urban environment. Glob J Environ Sci Manage 5:265–278. https://doi.org/10.22034/gjesm.2019.03.01 DOI
Khwaja HA, Parekh PP, Khan AR et al (2009) An in-depth characterization of urban aerosols using electron microscopy and energy dispersive x-ray analysis. Clean - Soil Air Water 37:544–554. https://doi.org/10.1002/clen.200900012 DOI
Kim MJ (2019) Changes in the relationship between particulate matter and surface temperature in Seoul from 2002–2017. Atmosphere 10:238. https://doi.org/10.3390/atmos10050238 DOI
Klimont Z, Kupiainen K, Heyes C et al (2017) Global anthropogenic emissions of particulate matter including black carbon. Atmos Chem Phys 17:8681–8723. https://doi.org/10.5194/acp-17-8681-2017 DOI
Kříž J, Loskot J, Štěpánek V et al (2016) Modelling of mercury emissions from large solid fuel combustion and biomonitoring in CZ-PL border region. Ecol Chem Eng S 23:593–604. https://doi.org/10.1515/eces-2016-0042 DOI
Li J, Liu Y, An Z et al (2020) Seasonal variations in PM2.5-induced oxidative stress and up-regulation of pro-inflammatory mediators. Aerosol Air Qual Res 20:679–687. https://doi.org/10.4209/aaqr.2019.06.0288 DOI
Ličbinský R, Frýbort A, Huzlík J et al (2010) Usage of scanning electron microscopy for particulate matter sources identification. Trans Transp Sci 3:137–144. https://doi.org/10.2478/v10158-010-0019-8 DOI
Liu Y, Wang Y, Dong J et al (2022) Association between air pollution and emergency department visits for upper respiratory tract infection in Lanzhou, China. Environ Sci Pollut Res 29:28816–28828. https://doi.org/10.1007/s11356-021-17932-2 DOI
Long E, Schwartz C, Carlsten C (2022) Controlled human exposure to diesel exhaust: a method for understanding health effects of traffic-related air pollution. Part Fibre Toxicol 19:15. https://doi.org/10.1186/s12989-022-00454-1 DOI
Loskot J, Kumar DK, Komárek J et al (2019) Morphology and composition of particulate matter in the air of urban area. Ecol Chem Eng A 26:59–71. https://doi.org/10.2428/ecea.2019.26(1-2)7 DOI
Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8:14. https://doi.org/10.3389/fpubh.2020.00014 DOI
Masri S, Li L, Dang A et al (2018) Source characterization and exposure modeling of gas-phase polycyclic aromatic hydrocarbon (PAH) concentrations in Southern California. Atmos Environ 177:175–186. https://doi.org/10.1016/j.atmosenv.2018.01.014 DOI
Mbazima SJ, Masekameni MD, Nelson G (2021) Physicochemical properties of indoor and outdoor particulate matter 2.5 in selected residential areas near a ferromanganese smelter. Int J Environ Res Public Health 18:8900. https://doi.org/10.3390/ijerph18178900 DOI
Mooibroek D, Sofowote UM, Hopke PK (2022) Source apportionment of ambient PM10 collected at three sites in an urban-industrial area with multi-time resolution factor analyses. Sci Total Environ 850:157981. https://doi.org/10.1016/j.scitotenv.2022.157981 DOI
Moran-Zuloaga D, Merchan-Merchan W, Rodríguez-Caballero E et al (2021) Overview and seasonality of PM10 and PM2.5 in Guayaquil, Ecuador. Aerosol Sci Eng 5:499–515. https://doi.org/10.1007/s41810-021-00117-2 DOI
Nestola E, Sgrigna G, Pallozzi E et al (2022) Experimental characterization of particulate and gaseous emissions from biomass burning of six Mediterranean species and litter. Forests 13:322. https://doi.org/10.3390/f13020322 DOI
Oroji B, Solgi E, Sadighzadeh A (2018) Recognition of the source and nature of atmospheric aerosols in Tehran, Iran. Aerosol Air Qual Res 18:2131–2140. https://doi.org/10.4209/aaqr.2018.03.0098 DOI
Peng Y, Shi N, Wang J et al (2021) Mercury speciation and size-specific distribution in filterable and condensable particulate matter from coal combustion. Sci Total Environ 787:147597. https://doi.org/10.1016/j.scitotenv.2021.147597 DOI
Pipal AS, Singh S, Satsangi GP (2019) Study on bulk to single particle analysis of atmospheric aerosols at urban region. Urban Climate 27:243–258. https://doi.org/10.1016/j.uclim.2018.12.008 DOI
R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org . Accessed 17 October 2022
Santoso M, Lestiani DD, Damastuti E et al (2020) Long term characteristics of atmospheric particulate matter and compositions in Jakarta, Indonesia. Atmos Pollut Res 11:2215–2225. https://doi.org/10.1016/j.apr.2020.09.006 DOI
Suvarapu L, Baek S-O (2017) Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in India and South Korea: a review. Mini-Rev Org Chem 13:452–464. https://doi.org/10.2174/1570193X13666161027125802 DOI
Švédová B, Matýsek D, Raclavská H et al (2020) Variation of the chemical composition of street dust in a highly industrialized city in the interval of ten years. J Environ Manage 267:110506. https://doi.org/10.1016/j.jenvman.2020.110506 DOI
Tan SY, Praveena SM, Abidin EZ, Cheema MS (2016) A review of heavy metals in indoor dust and its human health-risk implications. Rev Environ Health 31:447–456. https://doi.org/10.1515/reveh-2016-0026 DOI
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Molecular, Clinical and Environmental Toxicology. Springer, Basel, pp 133–164 DOI
Tuvjargal N, Enkhtsetseg L, Shagjjamba D, Zuzaan P (2019) Morphological study of PM 2.5 by SEM-EDS in Ulaanbaatar. IOP Conf Ser: Mater Sci Eng 704:12012. https://doi.org/10.1088/1757-899X/704/1/012012 DOI
Vallero D (2014) Fundamentals of Air Pollution, 5th edn. Academic Press, Cambridge
Wagner J, Wang Z-M, Ghosal S, Wall S (2019) Source identification on high PM2.5 days using SEM/EDS, XRF, Raman, and windblown dust modeling. Aerosol Air Qual Res 19:2518–2530. https://doi.org/10.4209/aaqr.2019.05.0276 DOI
World Health Organization (2021) WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization, Geneva. https://apps.who.int/iris/handle/10665/345329 . Accessed 17 October 2022
Xu X, Shang Y, Tian L et al (2019) Inhalation health risk assessment for the human tracheobronchial tree under PM exposure in a bus stop scene. Aerosol Air Qual Res 19:1365–1376. https://doi.org/10.4209/aaqr.2018.09.0343 DOI
Xue Q, Jiang Z, Wang X et al (2019) Comparative study of PM10-bound heavy metals and PAHs during six years in a Chinese megacity: compositions, sources, and source-specific risks. Ecotoxicol Environ Saf 186:109740. https://doi.org/10.1016/j.ecoenv.2019.109740 DOI
Yu G, Wang F, Hu J et al (2019) Value assessment of health losses caused by PM2.5 in Changsha City, China. Int J Environ Res Public Health 16:2063. https://doi.org/10.3390/ijerph16112063 DOI
Zhang W, Ma R, Wang Y et al (2022) The relationship between particulate matter and lung function of children: a systematic review and meta-analysis. Environ Pollut 309:119735. https://doi.org/10.1016/j.envpol.2022.119735 DOI
Zierold KM, Odoh C (2020) A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. Rev Environ Health 35:401–418. https://doi.org/10.1515/reveh-2019-0039 DOI