Comparative characterization of two monoclonal antibodies targeting canine PD-1

. 2024 ; 15 () : 1382576. [epub] 20240508

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid38779661

Monoclonal antibodies targeting immune checkpoints have revolutionized oncology. Yet, the effectiveness of these treatments varies significantly among patients, and they are associated with unexpected adverse events, including hyperprogression. The murine research model used in drug development fails to recapitulate both the functional human immune system and the population heterogeneity. Hence, a novel model is urgently needed to study the consequences of immune checkpoint blockade. Dogs appear to be uniquely suited for this role. Approximately 1 in 4 companion dogs dies from cancer, yet no antibodies are commercially available for use in veterinary oncology. Here we characterize two novel antibodies that bind canine PD-1 with sub-nanomolar affinity as measured by SPR. Both antibodies block the clinically crucial PD-1/PD-L1 interaction in a competitive ELISA assay. Additionally, the antibodies were tested with a broad range of assays including Western Blot, ELISA, flow cytometry, immunofluorescence and immunohistochemistry. The antibodies appear to bind two distinct epitopes as predicted by molecular modeling and peptide phage display. Our study provides new tools for canine oncology research and a potential veterinary therapeutic.

Zobrazit více v PubMed

Guo L, Zhang H, Chen B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J Cancer. (2017) 8:410–6. doi: 10.7150/jca.17144 PubMed DOI PMC

De Sousa Linhares A, Battin C, Jutz S, Leitner J, Hafner C, Tobias J, et al. . Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling. Sci Rep. (2019) 9:11472. doi: 10.1038/s41598-019-47910-1 PubMed DOI PMC

Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, et al. . PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. (2017) 214:895–904. doi: 10.1084/jem.20160801 PubMed DOI PMC

Aguilar EJ, Ricciuti B, Gainor JF, Kehl KL, Kravets S, Dahlberg S, et al. . Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann Oncol. (2019) 30:1653–9. doi: 10.1093/annonc/mdz288 PubMed DOI

Kocikowski M, Dziubek K, Parys M. Hyperprogression under immune checkpoint-based immunotherapy—Current understanding, the role of PD-1/PD-L1 tumour-intrinsic signalling, future directions and a potential large animal model. Cancers. (2020) 12:804. doi: 10.3390/cancers12040804 PubMed DOI PMC

Couey MA, Bell RB, Patel AA, Romba MC, Crittenden MR, Curti BD, et al. . Delayed immune-related events (DIRE) after discontinuation of immunotherapy: diagnostic hazard of autoimmunity at a distance. J Immunother Cancer. (2019) 7:165. doi: 10.1186/s40425-019-0645-6 PubMed DOI PMC

Ghisoni E, Wicky A, Bouchaab H, Imbimbo M, Delyon J, Gautron Moura B, et al. . Late-onset and long-lasting immune-related adverse events from immune checkpoint-inhibitors: An overlooked aspect in immunotherapy. Eur J Cancer. (2021) 149:153–64. doi: 10.1016/j.ejca.2021.03.010 PubMed DOI

Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. (2020) 52:17–35. doi: 10.1016/j.immuni.2019.12.011 PubMed DOI

Park JS, Withers SS, Modiano JF, Kent MS, Chen M, Luna JI, et al. . Canine cancer immunotherapy studies: linking mouse and human. J Immunother Cancer. (2016) 4:97. doi: 10.1186/s40425-016-0200-7 PubMed DOI PMC

Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. . Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. (2018) 359:91–7. doi: 10.1126/science.aan3706 PubMed DOI

Dow S. A role for dogs in advancing cancer immunotherapy research. Front Immunol. (2020) 10:2935. doi: 10.3389/fimmu.2019.02935 PubMed DOI PMC

Cekanova M, Rathore K. Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Devel Ther.. (2014) 8:1911–21. doi: 10.2147/DDDT PubMed DOI PMC

Davis BW, Ostrander EA. Domestic dogs and cancer research: A breed-based genomics approach. ILAR J. (2014) 55:59–68. doi: 10.1093/ilar/ilu017 PubMed DOI PMC

LeBlanc AK, Mazcko CN. Improving human cancer therapy through the evaluation of pet dogs. Nat Rev Cancer. (2020) 20:727–42. doi: 10.1038/s41568-020-0297-3 PubMed DOI

Martin J, Ponstingl H, Lefranc MP, Archer J, Sargan D, Bradley A. Comprehensive annotation and evolutionary insights into the canine (Canis lupus familiaris) antigen receptor loci. Immunogenetics. (2018) 70:223–36. doi: 10.1007/s00251-017-1028-0 PubMed DOI PMC

Cannarozzi G, Schneider A, Gonnet G. A phylogenomic study of human, dog, and mouse. Bourne PE, editor. PloS Comput Biol. (2007) 3:e2. doi: 10.1371/journal.pcbi.0030002 PubMed DOI PMC

Coy J, Caldwell A, Chow L, Guth A, Dow S. PD-1 expression by canine T cells and functional effects of PD-1 blockade: Canine PD-1 antibodies. Vet Comp Oncol. (2017) 15:1487–502. doi: 10.1111/vco.12294 PubMed DOI

Tagawa M, Kurashima C, Takagi S, Maekawa N, Konnai S, Shimbo G, et al. . Evaluation of costimulatory molecules in dogs with B cell high grade lymphoma. PloS One. (2018) 13(7):e0201222. doi: 10.1371/journal.pone.0201222 PubMed DOI PMC

Maekawa N, Konnai S, Ikebuchi R, Okagawa T, Adachi M, Takagi S, et al. . Expression of PD-L1 on canine tumor cells and enhancement of IFN-γ Production from tumor-infiltrating cells by PD-L1 blockade. Shiku H, editor. PloS One. (2014) 9:e98415. doi: 10.1371/journal.pone.0098415 PubMed DOI PMC

Maekawa N, Konnai S, Okagawa T, Nishimori A, Ikebuchi R, Izumi Y, et al. . Immunohistochemical analysis of PD-L1 expression in canine Malignant cancers and PD-1 expression on lymphocytes in canine oral melanoma. Shiku H, editor. PloS One. (2016) 11:e0157176. doi: 10.1371/journal.pone.0157176 PubMed DOI PMC

Maekawa N, Konnai S, Nishimura M, Kagawa Y, Takagi S, Hosoya K, et al. . PD-L1 immunohistochemistry for canine cancers and clinical benefit of anti-PD-L1 antibody in dogs with pulmonary metastatic oral Malignant melanoma. NPJ Precis Onc. (2021) 5:1–9. doi: 10.1038/s41698-021-00147-6 PubMed DOI PMC

Choi JW, Withers SS, Chang H, Spanier JA, de la Trinidad VL, Panesar H, et al. . Development of canine PD-1/PD-L1 specific monoclonal antibodies and amplification of canine T cell function. Ho M, editor. PloS One. (2020) 15:e0235518. doi: 10.1371/journal.pone.0235518 PubMed DOI PMC

Maekawa N, Konnai S, Takagi S, Kagawa Y, Okagawa T, Nishimori A, et al. . A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral Malignant melanoma or undifferentiated sarcoma. Sci Rep. (2017) 7(1):8951. doi: 10.1038/s41598-017-09444-2 PubMed DOI PMC

Oh W, Kim AMJ, Dhawan D, Kirkham PM, Ostafe R, Franco J, et al. . Development of an anti-canine PD-L1 antibody and caninized PD-L1 mouse model as translational research tools for the study of immunotherapy in humans. Cancer Res Commun. (2023) 3:860–73. doi: 10.1158/2767-9764.CRC-22-0468 PubMed DOI PMC

Nemoto Y, Shosu K, Okuda M, Noguchi S, Mizuno T. Development and characterization of monoclonal antibodies against canine PD-1 and PD-L1. Veterinary Immunol Immunopathol. (2018) 198:19–25. doi: 10.1016/j.vetimm.2018.02.007 PubMed DOI

Minoli L, Licenziato L, Kocikowski M, Cino M, Dziubek K, Iussich S, et al. . Development of monoclonal antibodies targeting canine PD-L1 and PD-1 and their clinical relevance in canine apocrine gland anal sac adenocarcinoma. Cancers. (2022) 14:6188. doi: 10.3390/cancers14246188 PubMed DOI PMC

Sim J, Sockolosky JT, Sangalang E, Izquierdo S, Pedersen D, Harriman W, et al. . Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor SIRPα. mAbs. (2019) 11:1036–52. doi: 10.1080/19420862.2019.1624123 PubMed DOI PMC

Stothard P. The sequence manipulation suite: javaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques. (2000) 28:1102–4. doi: 10.2144/00286ir01 PubMed DOI

Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins. Commun Biol. (2023) 6:1–8. doi: 10.1038/s42003-023-04927-7 PubMed DOI PMC

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. . Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. (2011) 7:539. doi: 10.1038/msb.2011.75 PubMed DOI PMC

Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al. . InterPro in 2022. Nucleic Acids Res. (2023) 51:D418–27. doi: 10.1093/nar/gkac993 PubMed DOI PMC

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. (2015) 10:845–58. doi: 10.1038/nprot.2015.053 PubMed DOI PMC

Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, et al. . New additions to the ClusPro server motivated by CAPRI. Proteins. (2017) 85:435–44. doi: 10.1002/prot.25219 PubMed DOI PMC

Brenke R, Hall DR, Chuang GY, Comeau SR, Bohnuud T, Beglov D, et al. . Application of asymmetric statistical potentials to antibody-protein docking. Bioinformatics. (2012) 28:2608–14. doi: 10.1093/bioinformatics/bts493 PubMed DOI PMC

Brunger AT, Wells JA, Warren L. DeLano 21 june 1972–3 november 2009. Struct Mol Biol. (2009) 16:1202–3. doi: 10.1038/nsmb1209-1202 PubMed DOI

Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. (2007) 372:774–97. doi: 10.1016/j.jmb.2007.05.022 PubMed DOI

Krejci A, Hupp TR, Lexa M, Vojtesek B, Muller P. Hammock: a hidden Markov model-based peptide clustering algorithm to identify protein-interaction consensus motifs in large datasets. Bioinformatics. (2016) 32:9–16. doi: 10.1093/bioinformatics/btv522 PubMed DOI PMC

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Res. (2004) 14(6):1188–90. doi: 10.1101/gr.849004 PubMed DOI PMC

Pantelyushin S, Ranninger E, Guerrera D, Hutter G, Maake C, Markkanen E, et al. . Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs. Cancers. (2021) 13:785. doi: 10.3390/cancers13040785 PubMed DOI PMC

Ciftci O, Müller LM, Jäggle LM, Lehmann C, Kneilmann C, Stierstorfer B, et al. . Cross-reactivity of human monoclonal antibodies with canine peripheral blood mononuclear cells. Veterinary Immunol Immunopathol. (2023) 259:110578. doi: 10.1016/j.vetimm.2023.110578 PubMed DOI

Watanabe E, Nishida O, Kakihana Y, Odani M, Okamura T, Harada T, et al. . Pharmacokinetics, pharmacodynamics, and safety of nivolumab in patients with sepsis-induced immunosuppression: A multicenter, open-label phase 1/2 study. Shock. (2020) 53:686–94. doi: 10.1097/SHK.0000000000001443 PubMed DOI PMC

Nugue G, Bidart M, Arlotto M, Mousseau M, Berger F, Pelletier L. Monitoring monoclonal antibody delivery in oncology: the example of bevacizumab. Rota R, editor. PloS One. (2013) 8:e72021. doi: 10.1371/journal.pone.0072021 PubMed DOI PMC

Sureda M, Mata JJ, Catalán A, Escudero V, Martínez-Navarro E, Rebollo J. Therapeutic drug monitoring of nivolumab in routine clinical practice. A Pilot Study Farm Hosp. (2020) 44:81–6. doi: 10.7399/fh.11319 PubMed DOI

Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, et al. . Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure. (2015) 23:2341–8. doi: 10.1016/j.str.2015.09.010 PubMed DOI PMC

Tan S, Zhang H, Chai Y, Song H, Tong Z, Wang Q, et al. . An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun. (2017) 8:14369. doi: 10.1038/ncomms14369 PubMed DOI PMC

Na Z, Yeo SP, Bharath SR, Bowler MW, Balıkçı E, Wang CI, et al. . Structural basis for blocking PD-1-mediated immune suppression by therapeutic antibody pembrolizumab. Cell Res. (2017) 27:147–50. doi: 10.1038/cr.2016.77 PubMed DOI PMC

Igase M, Nemoto Y, Itamoto K, Tani K, Nakaichi M, Sakurai M, et al. . A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci Rep. (2020) 10:18311. doi: 10.1038/s41598-020-75533-4 PubMed DOI PMC

Sun L, Li CW, Chung EM, Yang R, Kim YS, Park AH, et al. . Targeting glycosylated PD-1 induces potent antitumor immunity. Cancer Res. (2020) 80:2298–310. doi: 10.1158/0008-5472.CAN-19-3133 PubMed DOI PMC

Banna GL, Cantale O, Bersanelli M, Del Re M, Friedlaender A, Cortellini A, et al. . Are anti-PD1 and anti-PD-L1 alike? The non-small-cell lung cancer paradigm. Oncol Rev. (2020) 14(2):490. doi: 10.4081/oncol.2020.490 PubMed DOI PMC

Sonpavde GP, Grivas P, Lin Y, Hennessy D, Hunt JD. Immune-related adverse events with PD-1 versus PD-L1 inhibitors: a meta-analysis of 8730 patients from clinical trials. Future Oncol. (2021) 17:2545–58. doi: 10.2217/fon-2020-1222 PubMed DOI

Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. (2007) 27:111–22. doi: 10.1016/j.immuni.2007.05.016 PubMed DOI PMC

Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, et al. . RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med. (2014) 211:943–59. doi: 10.1084/jem.20130790 PubMed DOI PMC

Sugiura D, Okazaki IM, Maeda TK, Maruhashi T, Shimizu K, Arakaki R, et al. . PD-1 agonism by anti-CD80 inhibits T cell activation and alleviates autoimmunity. Nat Immunol. (2022) 23:399–410. doi: 10.1038/s41590-021-01125-7 PubMed DOI

Kwok G, Yau TCC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Hum Vaccines Immunotherapeutics. (2016) 12:2777–89. doi: 10.1080/21645515.2016.1199310 PubMed DOI PMC

Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. (2019) 12:76. doi: 10.1186/s13045-019-0760-3 PubMed DOI PMC

Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. (2020) 19:116. doi: 10.1186/s12943-020-01234-1 PubMed DOI PMC

Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. (2008) 27:5904–12. doi: 10.1038/onc.2008.271 PubMed DOI PMC

Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, et al. . PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res. (2017) 23:3158–67. doi: 10.1158/1078-0432.CCR-16-1761 PubMed DOI

Solinas C, Aiello M, Rozali E, Lambertini M, Willard-Gallo K, Migliori E. Programmed cell death-ligand 2: A neglected but important target in the immune response to cancer? Trans Oncol. (2020) 13:100811. doi: 10.1016/j.tranon.2020.100811 PubMed DOI PMC

Miao YR, Thakkar KN, Qian J, Kariolis MS, Huang W, Nandagopal S, et al. . Neutralization of PD-L2 is essential for overcoming immune checkpoint blockade resistance in ovarian cancer. Clin Cancer Res. (2021) 27:4435–48. doi: 10.1158/1078-0432.CCR-20-0482 PubMed DOI PMC

Ghiotto M, Gauthier L, Serriari N, Pastor S, Truneh A, Nunès JA, et al. . PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol. (2010) 22:651–60. doi: 10.1093/intimm/dxq049 PubMed DOI PMC

Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. (2018) 11:39. doi: 10.1186/s13045-018-0582-8 PubMed DOI PMC

Donini C, D’Ambrosio L, Grignani G, Aglietta M, Sangiolo D. Next generation immune-checkpoints for cancer therapy. J Thorac Dis. (2018) 10:S1581–601. doi: 10.21037/jtd PubMed DOI PMC

Nielsen C, Ohm-Laursen L, Barington T, Husby S, Lillevang ST. Alternative splice variants of the human PD-1 gene. Cell Immunol. (2005) 235:109–16. doi: 10.1016/j.cellimm.2005.07.007 PubMed DOI

Hajaj E, Zisman E, Tzaban S, Merims S, Cohen J, Klein S, et al. . Alternative splicing of the inhibitory immune checkpoint receptor SLAMF6 generates a dominant positive form, boosting T-cell effector functions. Cancer Immunol Res. (2021) 9:637–50. doi: 10.1158/2326-6066.CIR-20-0800 PubMed DOI

Hassounah NB, Malladi VS, Huang Y, Freeman SS, Beauchamp EM, Koyama S, et al. . Identification and characterization of an alternative cancer-derived PD-L1 splice variant. Cancer Immunol Immunother. (2019) 68:407–20. doi: 10.1007/s00262-018-2284-z PubMed DOI PMC

Qu S, Jiao Z, Lu G, Yao B, Wang T, Rong W, et al. . PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity. Genome Biol. (2021) 22:104. doi: 10.1186/s13059-021-02331-0 PubMed DOI PMC

Oku T, Ando Y, Ogura M, Tsuji T. Development of splice variant-specific monoclonal antibodies against human α3 integrin. Monoclonal Antibodies Immunodiagnosis Immunother. (2016) 35:12–7. doi: 10.1089/mab.2015.0053 PubMed DOI

Kocikowski M. Of Dogs and Men. Tracing Immune Checkpoint Signatures Across Cancers and Unleashing the Potential of Canine PD-1 Antibodies. [PhD dissertation]. University of Gdansk; (2023).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...