Comparative characterization of two monoclonal antibodies targeting canine PD-1
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, srovnávací studie
PubMed
38779661
PubMed Central
PMC11110041
DOI
10.3389/fimmu.2024.1382576
Knihovny.cz E-zdroje
- Klíčová slova
- PD-1, PD-L1, cancer immunotherapy, canine cancer, comparative oncology, immune checkpoint, monoclonal antibody, veterinary oncology,
- MeSH
- antigeny CD274 imunologie antagonisté a inhibitory metabolismus MeSH
- antigeny CD279 * antagonisté a inhibitory imunologie MeSH
- epitopy imunologie MeSH
- inhibitory kontrolních bodů imunologie farmakologie MeSH
- lidé MeSH
- monoklonální protilátky * imunologie MeSH
- nádory imunologie veterinární farmakoterapie MeSH
- nemoci psů imunologie farmakoterapie MeSH
- psi * MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi * MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- antigeny CD274 MeSH
- antigeny CD279 * MeSH
- epitopy MeSH
- inhibitory kontrolních bodů MeSH
- monoklonální protilátky * MeSH
Monoclonal antibodies targeting immune checkpoints have revolutionized oncology. Yet, the effectiveness of these treatments varies significantly among patients, and they are associated with unexpected adverse events, including hyperprogression. The murine research model used in drug development fails to recapitulate both the functional human immune system and the population heterogeneity. Hence, a novel model is urgently needed to study the consequences of immune checkpoint blockade. Dogs appear to be uniquely suited for this role. Approximately 1 in 4 companion dogs dies from cancer, yet no antibodies are commercially available for use in veterinary oncology. Here we characterize two novel antibodies that bind canine PD-1 with sub-nanomolar affinity as measured by SPR. Both antibodies block the clinically crucial PD-1/PD-L1 interaction in a competitive ELISA assay. Additionally, the antibodies were tested with a broad range of assays including Western Blot, ELISA, flow cytometry, immunofluorescence and immunohistochemistry. The antibodies appear to bind two distinct epitopes as predicted by molecular modeling and peptide phage display. Our study provides new tools for canine oncology research and a potential veterinary therapeutic.
Department of Biochemistry and Microbiology University of Victoria Victoria BC Canada
Institute of Genetic and Molecular Medicine University of Edinburgh Edinburgh United Kingdom
International Centre for Cancer Vaccine Science University of Gdansk Gdansk Poland
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czechia
Zobrazit více v PubMed
Guo L, Zhang H, Chen B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J Cancer. (2017) 8:410–6. doi: 10.7150/jca.17144 PubMed DOI PMC
De Sousa Linhares A, Battin C, Jutz S, Leitner J, Hafner C, Tobias J, et al. . Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling. Sci Rep. (2019) 9:11472. doi: 10.1038/s41598-019-47910-1 PubMed DOI PMC
Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, et al. . PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. (2017) 214:895–904. doi: 10.1084/jem.20160801 PubMed DOI PMC
Aguilar EJ, Ricciuti B, Gainor JF, Kehl KL, Kravets S, Dahlberg S, et al. . Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann Oncol. (2019) 30:1653–9. doi: 10.1093/annonc/mdz288 PubMed DOI
Kocikowski M, Dziubek K, Parys M. Hyperprogression under immune checkpoint-based immunotherapy—Current understanding, the role of PD-1/PD-L1 tumour-intrinsic signalling, future directions and a potential large animal model. Cancers. (2020) 12:804. doi: 10.3390/cancers12040804 PubMed DOI PMC
Couey MA, Bell RB, Patel AA, Romba MC, Crittenden MR, Curti BD, et al. . Delayed immune-related events (DIRE) after discontinuation of immunotherapy: diagnostic hazard of autoimmunity at a distance. J Immunother Cancer. (2019) 7:165. doi: 10.1186/s40425-019-0645-6 PubMed DOI PMC
Ghisoni E, Wicky A, Bouchaab H, Imbimbo M, Delyon J, Gautron Moura B, et al. . Late-onset and long-lasting immune-related adverse events from immune checkpoint-inhibitors: An overlooked aspect in immunotherapy. Eur J Cancer. (2021) 149:153–64. doi: 10.1016/j.ejca.2021.03.010 PubMed DOI
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. (2020) 52:17–35. doi: 10.1016/j.immuni.2019.12.011 PubMed DOI
Park JS, Withers SS, Modiano JF, Kent MS, Chen M, Luna JI, et al. . Canine cancer immunotherapy studies: linking mouse and human. J Immunother Cancer. (2016) 4:97. doi: 10.1186/s40425-016-0200-7 PubMed DOI PMC
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. . Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. (2018) 359:91–7. doi: 10.1126/science.aan3706 PubMed DOI
Dow S. A role for dogs in advancing cancer immunotherapy research. Front Immunol. (2020) 10:2935. doi: 10.3389/fimmu.2019.02935 PubMed DOI PMC
Cekanova M, Rathore K. Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Devel Ther.. (2014) 8:1911–21. doi: 10.2147/DDDT PubMed DOI PMC
Davis BW, Ostrander EA. Domestic dogs and cancer research: A breed-based genomics approach. ILAR J. (2014) 55:59–68. doi: 10.1093/ilar/ilu017 PubMed DOI PMC
LeBlanc AK, Mazcko CN. Improving human cancer therapy through the evaluation of pet dogs. Nat Rev Cancer. (2020) 20:727–42. doi: 10.1038/s41568-020-0297-3 PubMed DOI
Martin J, Ponstingl H, Lefranc MP, Archer J, Sargan D, Bradley A. Comprehensive annotation and evolutionary insights into the canine (Canis lupus familiaris) antigen receptor loci. Immunogenetics. (2018) 70:223–36. doi: 10.1007/s00251-017-1028-0 PubMed DOI PMC
Cannarozzi G, Schneider A, Gonnet G. A phylogenomic study of human, dog, and mouse. Bourne PE, editor. PloS Comput Biol. (2007) 3:e2. doi: 10.1371/journal.pcbi.0030002 PubMed DOI PMC
Coy J, Caldwell A, Chow L, Guth A, Dow S. PD-1 expression by canine T cells and functional effects of PD-1 blockade: Canine PD-1 antibodies. Vet Comp Oncol. (2017) 15:1487–502. doi: 10.1111/vco.12294 PubMed DOI
Tagawa M, Kurashima C, Takagi S, Maekawa N, Konnai S, Shimbo G, et al. . Evaluation of costimulatory molecules in dogs with B cell high grade lymphoma. PloS One. (2018) 13(7):e0201222. doi: 10.1371/journal.pone.0201222 PubMed DOI PMC
Maekawa N, Konnai S, Ikebuchi R, Okagawa T, Adachi M, Takagi S, et al. . Expression of PD-L1 on canine tumor cells and enhancement of IFN-γ Production from tumor-infiltrating cells by PD-L1 blockade. Shiku H, editor. PloS One. (2014) 9:e98415. doi: 10.1371/journal.pone.0098415 PubMed DOI PMC
Maekawa N, Konnai S, Okagawa T, Nishimori A, Ikebuchi R, Izumi Y, et al. . Immunohistochemical analysis of PD-L1 expression in canine Malignant cancers and PD-1 expression on lymphocytes in canine oral melanoma. Shiku H, editor. PloS One. (2016) 11:e0157176. doi: 10.1371/journal.pone.0157176 PubMed DOI PMC
Maekawa N, Konnai S, Nishimura M, Kagawa Y, Takagi S, Hosoya K, et al. . PD-L1 immunohistochemistry for canine cancers and clinical benefit of anti-PD-L1 antibody in dogs with pulmonary metastatic oral Malignant melanoma. NPJ Precis Onc. (2021) 5:1–9. doi: 10.1038/s41698-021-00147-6 PubMed DOI PMC
Choi JW, Withers SS, Chang H, Spanier JA, de la Trinidad VL, Panesar H, et al. . Development of canine PD-1/PD-L1 specific monoclonal antibodies and amplification of canine T cell function. Ho M, editor. PloS One. (2020) 15:e0235518. doi: 10.1371/journal.pone.0235518 PubMed DOI PMC
Maekawa N, Konnai S, Takagi S, Kagawa Y, Okagawa T, Nishimori A, et al. . A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral Malignant melanoma or undifferentiated sarcoma. Sci Rep. (2017) 7(1):8951. doi: 10.1038/s41598-017-09444-2 PubMed DOI PMC
Oh W, Kim AMJ, Dhawan D, Kirkham PM, Ostafe R, Franco J, et al. . Development of an anti-canine PD-L1 antibody and caninized PD-L1 mouse model as translational research tools for the study of immunotherapy in humans. Cancer Res Commun. (2023) 3:860–73. doi: 10.1158/2767-9764.CRC-22-0468 PubMed DOI PMC
Nemoto Y, Shosu K, Okuda M, Noguchi S, Mizuno T. Development and characterization of monoclonal antibodies against canine PD-1 and PD-L1. Veterinary Immunol Immunopathol. (2018) 198:19–25. doi: 10.1016/j.vetimm.2018.02.007 PubMed DOI
Minoli L, Licenziato L, Kocikowski M, Cino M, Dziubek K, Iussich S, et al. . Development of monoclonal antibodies targeting canine PD-L1 and PD-1 and their clinical relevance in canine apocrine gland anal sac adenocarcinoma. Cancers. (2022) 14:6188. doi: 10.3390/cancers14246188 PubMed DOI PMC
Sim J, Sockolosky JT, Sangalang E, Izquierdo S, Pedersen D, Harriman W, et al. . Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor SIRPα. mAbs. (2019) 11:1036–52. doi: 10.1080/19420862.2019.1624123 PubMed DOI PMC
Stothard P. The sequence manipulation suite: javaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques. (2000) 28:1102–4. doi: 10.2144/00286ir01 PubMed DOI
Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins. Commun Biol. (2023) 6:1–8. doi: 10.1038/s42003-023-04927-7 PubMed DOI PMC
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. . Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. (2011) 7:539. doi: 10.1038/msb.2011.75 PubMed DOI PMC
Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al. . InterPro in 2022. Nucleic Acids Res. (2023) 51:D418–27. doi: 10.1093/nar/gkac993 PubMed DOI PMC
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. (2015) 10:845–58. doi: 10.1038/nprot.2015.053 PubMed DOI PMC
Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, et al. . New additions to the ClusPro server motivated by CAPRI. Proteins. (2017) 85:435–44. doi: 10.1002/prot.25219 PubMed DOI PMC
Brenke R, Hall DR, Chuang GY, Comeau SR, Bohnuud T, Beglov D, et al. . Application of asymmetric statistical potentials to antibody-protein docking. Bioinformatics. (2012) 28:2608–14. doi: 10.1093/bioinformatics/bts493 PubMed DOI PMC
Brunger AT, Wells JA, Warren L. DeLano 21 june 1972–3 november 2009. Struct Mol Biol. (2009) 16:1202–3. doi: 10.1038/nsmb1209-1202 PubMed DOI
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. (2007) 372:774–97. doi: 10.1016/j.jmb.2007.05.022 PubMed DOI
Krejci A, Hupp TR, Lexa M, Vojtesek B, Muller P. Hammock: a hidden Markov model-based peptide clustering algorithm to identify protein-interaction consensus motifs in large datasets. Bioinformatics. (2016) 32:9–16. doi: 10.1093/bioinformatics/btv522 PubMed DOI PMC
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Res. (2004) 14(6):1188–90. doi: 10.1101/gr.849004 PubMed DOI PMC
Pantelyushin S, Ranninger E, Guerrera D, Hutter G, Maake C, Markkanen E, et al. . Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs. Cancers. (2021) 13:785. doi: 10.3390/cancers13040785 PubMed DOI PMC
Ciftci O, Müller LM, Jäggle LM, Lehmann C, Kneilmann C, Stierstorfer B, et al. . Cross-reactivity of human monoclonal antibodies with canine peripheral blood mononuclear cells. Veterinary Immunol Immunopathol. (2023) 259:110578. doi: 10.1016/j.vetimm.2023.110578 PubMed DOI
Watanabe E, Nishida O, Kakihana Y, Odani M, Okamura T, Harada T, et al. . Pharmacokinetics, pharmacodynamics, and safety of nivolumab in patients with sepsis-induced immunosuppression: A multicenter, open-label phase 1/2 study. Shock. (2020) 53:686–94. doi: 10.1097/SHK.0000000000001443 PubMed DOI PMC
Nugue G, Bidart M, Arlotto M, Mousseau M, Berger F, Pelletier L. Monitoring monoclonal antibody delivery in oncology: the example of bevacizumab. Rota R, editor. PloS One. (2013) 8:e72021. doi: 10.1371/journal.pone.0072021 PubMed DOI PMC
Sureda M, Mata JJ, Catalán A, Escudero V, Martínez-Navarro E, Rebollo J. Therapeutic drug monitoring of nivolumab in routine clinical practice. A Pilot Study Farm Hosp. (2020) 44:81–6. doi: 10.7399/fh.11319 PubMed DOI
Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, et al. . Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure. (2015) 23:2341–8. doi: 10.1016/j.str.2015.09.010 PubMed DOI PMC
Tan S, Zhang H, Chai Y, Song H, Tong Z, Wang Q, et al. . An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun. (2017) 8:14369. doi: 10.1038/ncomms14369 PubMed DOI PMC
Na Z, Yeo SP, Bharath SR, Bowler MW, Balıkçı E, Wang CI, et al. . Structural basis for blocking PD-1-mediated immune suppression by therapeutic antibody pembrolizumab. Cell Res. (2017) 27:147–50. doi: 10.1038/cr.2016.77 PubMed DOI PMC
Igase M, Nemoto Y, Itamoto K, Tani K, Nakaichi M, Sakurai M, et al. . A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci Rep. (2020) 10:18311. doi: 10.1038/s41598-020-75533-4 PubMed DOI PMC
Sun L, Li CW, Chung EM, Yang R, Kim YS, Park AH, et al. . Targeting glycosylated PD-1 induces potent antitumor immunity. Cancer Res. (2020) 80:2298–310. doi: 10.1158/0008-5472.CAN-19-3133 PubMed DOI PMC
Banna GL, Cantale O, Bersanelli M, Del Re M, Friedlaender A, Cortellini A, et al. . Are anti-PD1 and anti-PD-L1 alike? The non-small-cell lung cancer paradigm. Oncol Rev. (2020) 14(2):490. doi: 10.4081/oncol.2020.490 PubMed DOI PMC
Sonpavde GP, Grivas P, Lin Y, Hennessy D, Hunt JD. Immune-related adverse events with PD-1 versus PD-L1 inhibitors: a meta-analysis of 8730 patients from clinical trials. Future Oncol. (2021) 17:2545–58. doi: 10.2217/fon-2020-1222 PubMed DOI
Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. (2007) 27:111–22. doi: 10.1016/j.immuni.2007.05.016 PubMed DOI PMC
Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, et al. . RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med. (2014) 211:943–59. doi: 10.1084/jem.20130790 PubMed DOI PMC
Sugiura D, Okazaki IM, Maeda TK, Maruhashi T, Shimizu K, Arakaki R, et al. . PD-1 agonism by anti-CD80 inhibits T cell activation and alleviates autoimmunity. Nat Immunol. (2022) 23:399–410. doi: 10.1038/s41590-021-01125-7 PubMed DOI
Kwok G, Yau TCC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Hum Vaccines Immunotherapeutics. (2016) 12:2777–89. doi: 10.1080/21645515.2016.1199310 PubMed DOI PMC
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. (2019) 12:76. doi: 10.1186/s13045-019-0760-3 PubMed DOI PMC
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. (2020) 19:116. doi: 10.1186/s12943-020-01234-1 PubMed DOI PMC
Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. (2008) 27:5904–12. doi: 10.1038/onc.2008.271 PubMed DOI PMC
Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, et al. . PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res. (2017) 23:3158–67. doi: 10.1158/1078-0432.CCR-16-1761 PubMed DOI
Solinas C, Aiello M, Rozali E, Lambertini M, Willard-Gallo K, Migliori E. Programmed cell death-ligand 2: A neglected but important target in the immune response to cancer? Trans Oncol. (2020) 13:100811. doi: 10.1016/j.tranon.2020.100811 PubMed DOI PMC
Miao YR, Thakkar KN, Qian J, Kariolis MS, Huang W, Nandagopal S, et al. . Neutralization of PD-L2 is essential for overcoming immune checkpoint blockade resistance in ovarian cancer. Clin Cancer Res. (2021) 27:4435–48. doi: 10.1158/1078-0432.CCR-20-0482 PubMed DOI PMC
Ghiotto M, Gauthier L, Serriari N, Pastor S, Truneh A, Nunès JA, et al. . PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol. (2010) 22:651–60. doi: 10.1093/intimm/dxq049 PubMed DOI PMC
Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. (2018) 11:39. doi: 10.1186/s13045-018-0582-8 PubMed DOI PMC
Donini C, D’Ambrosio L, Grignani G, Aglietta M, Sangiolo D. Next generation immune-checkpoints for cancer therapy. J Thorac Dis. (2018) 10:S1581–601. doi: 10.21037/jtd PubMed DOI PMC
Nielsen C, Ohm-Laursen L, Barington T, Husby S, Lillevang ST. Alternative splice variants of the human PD-1 gene. Cell Immunol. (2005) 235:109–16. doi: 10.1016/j.cellimm.2005.07.007 PubMed DOI
Hajaj E, Zisman E, Tzaban S, Merims S, Cohen J, Klein S, et al. . Alternative splicing of the inhibitory immune checkpoint receptor SLAMF6 generates a dominant positive form, boosting T-cell effector functions. Cancer Immunol Res. (2021) 9:637–50. doi: 10.1158/2326-6066.CIR-20-0800 PubMed DOI
Hassounah NB, Malladi VS, Huang Y, Freeman SS, Beauchamp EM, Koyama S, et al. . Identification and characterization of an alternative cancer-derived PD-L1 splice variant. Cancer Immunol Immunother. (2019) 68:407–20. doi: 10.1007/s00262-018-2284-z PubMed DOI PMC
Qu S, Jiao Z, Lu G, Yao B, Wang T, Rong W, et al. . PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity. Genome Biol. (2021) 22:104. doi: 10.1186/s13059-021-02331-0 PubMed DOI PMC
Oku T, Ando Y, Ogura M, Tsuji T. Development of splice variant-specific monoclonal antibodies against human α3 integrin. Monoclonal Antibodies Immunodiagnosis Immunother. (2016) 35:12–7. doi: 10.1089/mab.2015.0053 PubMed DOI
Kocikowski M. Of Dogs and Men. Tracing Immune Checkpoint Signatures Across Cancers and Unleashing the Potential of Canine PD-1 Antibodies. [PhD dissertation]. University of Gdansk; (2023).