Development of Monoclonal Antibodies Targeting Canine PD-L1 and PD-1 and Their Clinical Relevance in Canine Apocrine Gland Anal Sac Adenocarcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36551672
PubMed Central
PMC9777308
DOI
10.3390/cancers14246188
PII: cancers14246188
Knihovny.cz E-zdroje
- Klíčová slova
- PD-1, PD-L1, apocrine gland anal sac adenocarcinoma, dog, immunohistochemistry, tumor-infiltrating lymphocytes,
- Publikační typ
- časopisecké články MeSH
Canine apocrine gland anal sac adenocarcinoma (AGASACA) is an aggressive canine tumor originating from the anal sac glands. Surgical resection, with or without adjuvant chemotherapy, represents the standard of care for this tumor, but the outcome is generally poor, particularly for tumors diagnosed at an advanced stage. For this reason, novel treatment options are warranted, and a few recent reports have suggested the activation of the immune checkpoint axis in canine AGASACA. In our study, we developed canine-specific monoclonal antibodies targeting PD-1 and PD-L1. A total of 41 AGASACAs with complete clinical and follow-up information were then analyzed by immunohistochemistry for the expression of the two checkpoint molecules (PD-L1 and PD-1) and the presence of tumor-infiltrating lymphocytes (CD3 and CD20), which were evaluated within the tumor bulk (intratumor) and in the surrounding stroma (peritumor). Seventeen AGASACAs (42%) expressed PD-L1 in a range between 5% and 95%. The intratumor lymphocytes were predominantly CD3+ T-cells and were positively correlated with the number of PD-1+ intratumor lymphocytes (ρ = 0.36; p = 0.02). The peritumor lymphocytes were a mixture of CD3+ and CD20+ cells with variable PD-1 expression (range 0-50%). PD-L1 expression negatively affected survival only in the subgroup of dogs treated with surgery alone (n = 14; 576 vs. 235 days). The presence of a heterogeneous lymphocytic infiltrate and the expression of PD-1 and PD-L1 molecules support the relevance of the immune microenvironment in canine AGASACAs and the potential value of immune checkpoints as promising therapeutic targets.
Department of Veterinary Sciences University of Parma Strada del Taglio 10 43100 Parma Italy
Department of Veterinary Sciences University of Turin Largo Braccini 2 10095 Grugliasco Italy
Institute of Genetics and Cancer The University of Edinburgh Crewe Road Edinburgh EH4 2XU UK
International Centre for Cancer Vaccine Science University of Gdansk Kladki 24 80822 Gdansk Poland
Zobrazit více v PubMed
Polton G.A., Brearley M.J. Clinical Stage, Therapy, and Prognosis in Canine Anal Sac Gland Carcinoma. J. Vet. Intern. Med. 2007;21:274–280. doi: 10.1111/j.1939-1676.2007.tb02960.x. PubMed DOI
Barnes D.C., Demetriou J.L. Surgical Management of Primary, Metastatic and Recurrent Anal Sac Adenocarcinoma in the Dog: 52 Cases. J. Small Anim. Pract. 2017;58:263–268. doi: 10.1111/jsap.12633. PubMed DOI
Wouda R.M., Borrego J., Keuler N.S., Stein T. Evaluation of Adjuvant Carboplatin Chemotherapy in the Management of Surgically Excised Anal Sac Apocrine Gland Adenocarcinoma in Dogs. Vet. Comp. Oncol. 2016;14:67–80. doi: 10.1111/vco.12068. PubMed DOI PMC
Potanas C.P., Padgett S., Gamblin R.M. Surgical Excision of Anal Sac Apocrine Gland Adenocarcinomas with and without Adjunctive Chemotherapy in Dogs: 42 Cases (2005–2011) J. Am. Vet. Med. Assoc. 2015;246:877–884. doi: 10.2460/javma.246.8.877. PubMed DOI
Valenti P., Menicagli F., Baldi A., Barella G., Catalucci C., Attorri V., Spugnini E.P. Evaluation of Electrochemotherapy in the Management of Apocrine Gland Anal Sac Adenocarcinomas in Dogs: A Retrospective Study. Open Vet. J. 2021;11:100–106. doi: 10.4314/ovj.v11i1.15. PubMed DOI PMC
Meier V., Besserer J., Roos M., Rohrer Bley C. A Complication Probability Study for a Definitive-Intent, Moderately Hypofractionated Image-Guided Intensity-Modulated Radiotherapy Protocol for Anal Sac Adenocarcinoma in Dogs. Vet. Comp. Oncol. 2019;17:21–31. doi: 10.1111/vco.12441. PubMed DOI
McQuown B., Keyerleber M.A., Rosen K., McEntee M.C., Burgess K.E. Treatment of Advanced Canine Anal Sac Adenocarcinoma with Hypofractionated Radiation Therapy: 77 Cases (1999–2013) Vet. Comp. Oncol. 2017;15:840–851. doi: 10.1111/vco.12226. PubMed DOI
Williams C., Parys M., Handel I., Serra J.C., Lawrence J. Minimal Late Radiation Toxicity and Transient Early Toxicity Following Postoperative Definitive Intent Conformal Radiation Therapy (20 × 2.5 Gy) for Canine Apocrine Gland Anal Sac Adenocarcinoma. Vet. Radiol. Ultrasound. 2022;63:224–233. doi: 10.1111/vru.13042. PubMed DOI
Swan M., Morrow D., Grace M., Adby N., Lurie D. Pilot Study Evaluating the Feasibility of Stereotactic Body Radiation Therapy for Canine Anal Sac Adenocarcinomas. Vet. Radiol. Ultrasound. 2021;62:621–629. doi: 10.1111/vru.12998. PubMed DOI
Wouda R.M., Hocker S.E., Higginbotham M.L. Safety Evaluation of Combination Carboplatin and Toceranib Phosphate (Palladia) in Tumour-Bearing Dogs: A Phase I Dose Finding Study. Vet. Comp. Oncol. 2018;16:E52–E60. doi: 10.1111/vco.12332. PubMed DOI
London C., Mathie T., Stingle N., Clifford C., Haney S., Klein M.K., Beaver L., Vickery K., Vail D.M., Hershey B., et al. Preliminary Evidence for Biologic Activity of Toceranib Phosphate (Palladia®®) in Solid Tumours. Vet. Comp. Oncol. 2012;10:194–205. doi: 10.1111/j.1476-5829.2011.00275.x. PubMed DOI PMC
Elliott J.W. Response and Outcome Following Toceranib Phosphate Treatment for Stage Four Anal Sac Apocrine Gland Adenocarcinoma in Dogs: 15 Cases (2013–2017) J. Am. Vet. Med. Assoc. 2019;254:960–966. doi: 10.2460/javma.254.8.960. PubMed DOI
Heaton C.M., Fernandes A.F.A., Jark P.C., Pan X. Evaluation of Toceranib for Treatment of Apocrine Gland Anal Sac Adenocarcinoma in Dogs. J. Vet. Intern. Med. 2020;34:873–881. doi: 10.1111/jvim.15706. PubMed DOI PMC
Pradel J., Berlato D., Dobromylskyj M., Rasotto R. Prognostic Significance of Histopathology in Canine Anal Sac Gland Adenocarcinomas: Preliminary Results in a Retrospective Study of 39 Cases. Vet. Comp. Oncol. 2018;16:518–528. doi: 10.1111/vco.12410. PubMed DOI
Simeonov R., Simeonova G. Quantitative Analysis in Spontaneous Canine Anal Sac Gland Adenomas and Carcinomas. Res. Vet. Sci. 2008;85:559–562. doi: 10.1016/j.rvsc.2008.03.009. PubMed DOI
Mosca A., Restif O., Dobson J., Hughes K. Expression of Phosphorylated Signal Transducer and Activator of Transcription 3 and Its Prognostic Significance in Canine Anal Sac Adenocarcinoma. J. Comp. Pathol. 2021;182:15–21. doi: 10.1016/j.jcpa.2020.11.002. PubMed DOI
Skorupski K.A., Alarcón C.N., de Lorimier L.-P., LaDouceur E.E.B., Rodriguez C.O., Rebhun R.B. Outcome and Clinical, Pathological, and Immunohistochemical Factors Associated with Prognosis for Dogs with Early-Stage Anal Sac Adenocarcinoma Treated with Surgery Alone: 34 Cases (2002–2013) J. Am. Vet. Med. Assoc. 2018;253:84–91. doi: 10.2460/javma.253.1.84. PubMed DOI
Wong H., Byrne S., Rasotto R., Drees R., Taylor A., Priestnall S.L., Leo C. A Retrospective Study of Clinical and Histopathological Features of 81 Cases of Canine Apocrine Gland Adenocarcinoma of the Anal Sac: Independent Clinical and Histopathological Risk Factors Associated with Outcome. Animals. 2021;11:3327. doi: 10.3390/ani11113327. PubMed DOI PMC
Morello E.M., Cino M., Giacobino D., Nicoletti A., Iussich S., Buracco P., Martano M. Prognostic Value of Ki67 and Other Clinical and Histopathological Factors in Canine Apocrine Gland Anal Sac Adenocarcinoma. Animals. 2021;11:1649. doi: 10.3390/ani11061649. PubMed DOI PMC
Yamazaki H., Tanaka T., Mie K., Nishida H., Miura N., Akiyoshi H. Assessment of Postoperative Adjuvant Treatment Using Toceranib Phosphate against Adenocarcinoma in Dogs. J. Vet. Intern. Med. 2020;34:1272–1281. doi: 10.1111/jvim.15768. PubMed DOI PMC
Ariyarathna H., Thomson N.A., Aberdein D., Perrott M.R., Munday J.S. Increased Programmed Death Ligand (PD-L1) and Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) Expression Is Associated with Metastasis and Poor Prognosis in Malignant Canine Mammary Gland Tumours. Vet. Immunol. Immunopathol. 2020;230:110142. doi: 10.1016/j.vetimm.2020.110142. PubMed DOI
Aresu L., Ferraresso S., Marconato L., Cascione L., Napoli S., Gaudio E., Kwee I., Tarantelli C., Testa A., Maniaci C., et al. New Molecular and Therapeutic Insights into Canine Diffuse Large B-Cell Lymphoma Elucidates the Role of the Dog as a Model for Human Disease. Haematologica. 2019;104:e256–e259. doi: 10.3324/haematol.2018.207027. PubMed DOI PMC
Aresu L., Marconato L., Martini V., Fanelli A., Licenziato L., Foiani G., Melchiotti E., Nicoletti A., Vascellari M. Prognostic Value of PD-L1, PD-1 and CD8A in Canine Diffuse Large B-Cell Lymphoma Detected by RNAscope. Vet. Sci. 2021;8:120. doi: 10.3390/vetsci8070120. PubMed DOI PMC
Igase M., Nemoto Y., Itamoto K., Tani K., Nakaichi M., Sakurai M., Sakai Y., Noguchi S., Kato M., Tsukui T., et al. A Pilot Clinical Study of the Therapeutic Antibody against Canine PD-1 for Advanced Spontaneous Cancers in Dogs. Sci. Rep. 2020;10:18311. doi: 10.1038/s41598-020-75533-4. PubMed DOI PMC
Maekawa N., Konnai S., Takagi S., Kagawa Y., Okagawa T., Nishimori A., Ikebuchi R., Izumi Y., Deguchi T., Nakajima C., et al. A Canine Chimeric Monoclonal Antibody Targeting PD-L1 and Its Clinical Efficacy in Canine Oral Malignant Melanoma or Undifferentiated Sarcoma. Sci. Rep. 2017;7:8951. doi: 10.1038/s41598-017-09444-2. PubMed DOI PMC
Maekawa N., Konnai S., Nishimura M., Kagawa Y., Takagi S., Hosoya K., Ohta H., Kim S., Okagawa T., Izumi Y., et al. PD-L1 Immunohistochemistry for Canine Cancers and Clinical Benefit of Anti-PD-L1 Antibody in Dogs with Pulmonary Metastatic Oral Malignant Melanoma. npj Precis. Oncol. 2021;5:10. doi: 10.1038/s41698-021-00147-6. PubMed DOI PMC
Choi J.W., Withers S.S., Chang H., Spanier J.A., Trinidad V.L.D.L., Panesar H., Fife B.T., Sciammas R., Sparger E.E., Moore P.F., et al. Development of Canine PD-1/PD-L1 Specific Monoclonal Antibodies and Amplification of Canine T Cell Function. PLoS ONE. 2020;15:e0235518. doi: 10.1371/journal.pone.0235518. PubMed DOI PMC
Jiang X., Wang J., Deng X., Xiong F., Ge J., Xiang B., Wu X., Ma J., Zhou M., Li X., et al. Role of the Tumor Microenvironment in PD-L1/PD-1-Mediated Tumor Immune Escape. Mol. Cancer. 2019;18:10. doi: 10.1186/s12943-018-0928-4. PubMed DOI PMC
Vojtĕsek B., Bártek J., Midgley C.A., Lane D.P. An Immunochemical Analysis of the Human Nuclear Phosphoprotein P53. New Monoclonal Antibodies and Epitope Mapping Using Recombinant P53. J. Immunol. Methods. 1992;151:237–244. doi: 10.1016/0022-1759(92)90122-A. PubMed DOI
Pinard C.J., Hocker S.E., Poon A.C., Inkol J.M., Matsuyama A., Wood R.D., Wood G.A., Woods J.P., Mutsaers A.J. Evaluation of PD-1 and PD-L1 Expression in Canine Urothelial Carcinoma Cell Lines. Vet. Immunol. Immunopathol. 2022;243:110367. doi: 10.1016/j.vetimm.2021.110367. PubMed DOI
Hartley G., Faulhaber E., Caldwell A., Coy J., Kurihara J., Guth A., Regan D., Dow S. Immune Regulation of Canine Tumour and Macrophage PD-L1 Expression. Vet. Comp. Oncol. 2017;15:534–549. doi: 10.1111/vco.12197. PubMed DOI
Nagaya T., Okuyama S., Ogata F., Maruoka Y., Knapp D.W., Karagiannis S.N., Fazekas-Singer J., Choyke P.L., LeBlanc A.K., Jensen-Jarolim E., et al. Near Infrared Photoimmunotherapy Targeting Bladder Cancer with a Canine Anti-Epidermal Growth Factor Receptor (EGFR) Antibody. Oncotarget. 2018;9:19026–19038. doi: 10.18632/oncotarget.24876. PubMed DOI PMC
Li C.-W., Lim S.-O., Xia W., Lee H.-H., Chan L.-C., Kuo C.-W., Khoo K.-H., Chang S.-S., Cha J.-H., Kim T., et al. Glycosylation and Stabilization of Programmed Death Ligand-1 Suppresses T-Cell Activity. Nat. Commun. 2016;7:12632. doi: 10.1038/ncomms12632. PubMed DOI PMC
Li S.-M., Zhou J., Wang Y., Nie R.-C., Chen J.-W., Xie D. Recent Findings in the Posttranslational Modifications of PD-L1. J. Oncol. 2020;2020:5497015. doi: 10.1155/2020/5497015. PubMed DOI PMC
Chen D.S., Mellman I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity. 2013;39:1–10. doi: 10.1016/j.immuni.2013.07.012. PubMed DOI
Chen D.S., Mellman I. Elements of Cancer Immunity and the Cancer–Immune Set Point. Nature. 2017;541:321–330. doi: 10.1038/nature21349. PubMed DOI
Von Rueden S.K., Fan T.M. Cancer-Immunity Cycle and Therapeutic Interventions—Opportunities for Including Pet Dogs With Cancer. Front. Oncol. 2021;11:4853. doi: 10.3389/fonc.2021.773420. PubMed DOI PMC
Haake A.F.H., Langenhagen A.K., Jovanovic V.M., Andreotti S., Gruber A.D. ‘Hot Versus Cold’—Can Transcriptome Analysis of Canine Perianal Tumours Help Illustrate Their Distinct Immunophenotypic Landscapes? J. Comp. Pathol. 2022;191:14. doi: 10.1016/j.jcpa.2021.11.032. DOI
Marconato L., Frayssinet P., Rouquet N., Comazzi S., Leone V.F., Laganga P., Rossi F., Vignoli M., Pezzoli L., Aresu L. Randomized, Placebo-Controlled, Double-Blinded Chemoimmunotherapy Clinical Trial in a Pet Dog Model of Diffuse Large B-Cell Lymphoma. Clin. Cancer Res. 2014;20:668–677. doi: 10.1158/1078-0432.CCR-13-2283. PubMed DOI
Riccardo F., Tarone L., Camerino M., Giacobino D., Iussich S., Barutello G., Arigoni M., Conti L., Bolli E., Quaglino E., et al. Antigen Mimicry as an Effective Strategy to Induce CSPG4-Targeted Immunity in Dogs with Oral Melanoma: A Veterinary Trial. J. Immunother. Cancer. 2022;10:e004007. doi: 10.1136/jitc-2021-004007. PubMed DOI PMC
Alonso-Miguel D., Valdivia G., Guerrera D., Perez-Alenza M.D., Pantelyushin S., Alonso-Diez A., Beiss V., Fiering S., Steinmetz N.F., Suarez-Redondo M., et al. Neoadjuvant in Situ Vaccination with Cowpea Mosaic Virus as a Novel Therapy against Canine Inflammatory Mammary Cancer. J. Immunother. Cancer. 2022;10:e004044. doi: 10.1136/jitc-2021-004044. PubMed DOI PMC
Cascio M.J., Whitley E.M., Sahay B., Cortes-Hinojosa G., Chang L.-J., Cowart J., Salute M., Sayour E., Dark M., Sandoval Z., et al. Canine Osteosarcoma Checkpoint Expression Correlates with Metastasis and T-Cell Infiltrate. Vet. Immunol. Immunopathol. 2021;232:110169. doi: 10.1016/j.vetimm.2020.110169. PubMed DOI
Shosu R. Programmed Cell Death Ligand 1 Expression in Canine Cancer. In Vivo. 2016;10:195–204. PubMed
Doroshow D.B., Bhalla S., Beasley M.B., Sholl L.M., Kerr K.M., Gnjatic S., Wistuba I.I., Rimm D.L., Tsao M.S., Hirsch F.R. PD-L1 as a Biomarker of Response to Immune-Checkpoint Inhibitors. Nat. Rev. Clin. Oncol. 2021;18:345–362. doi: 10.1038/s41571-021-00473-5. PubMed DOI
Li H., Kuang X., Liang L., Ye Y., Zhang Y., Li J., Ma F., Tao J., Lei G., Zhao S., et al. The Beneficial Role of Sunitinib in Tumor Immune Surveillance by Regulating Tumor PD-L1. Adv. Sci. (Weinh.) 2021;8:2001596. doi: 10.1002/advs.202001596. PubMed DOI PMC